Felicidades a Pavel y Óscar

abril 3, 2016

Aquí pueden encontrar información sobre la vigésima quinta edición del concurso de investigación para estudiantes del nivel medio superior: “MEF EDUCATIONAL INSTITUTIONS RESEARCH PROJECTS COMPETITION“, cuya fase final se celebrará del 10 al 13 de mayo en Estambul, Turquía.

El concurso tiene dos fases. La primera consiste en que grupos de máximo dos estudiantes y un supervisor envíen un reporte científico y un video promocional de sus proyectos. Estos materiales son evaluados por un comité para determinar si tienen la calidad necesaria para pasar a la segunda (y final) fase, en la que los estudiantes y supervisor presentan de manera presencial sus resultados ante los miembros del comité evaluador. Existen tres categorías: física, química y biología. Hay un premio por categoría.

Este año, por primera vez, México participa en este evento a través de un equipo de la Universidad de Colima conformado por los estudiantes Pavel Ignacio Amezcua Camarena del Bachillerato 18 y Óscar Alejandro Chávez Torres del Bachillerato 25 . Como supervisor funge el Dr. Juan Reyes Gómez.

El equipo de la U de C participó en la categoría de física y logró pasar a la segunda fase.  Su proyecto lleva por título: “Death by carbon monoxide: Search for sensor materials to reduce it”

Aquí pueden encontrar el reporte científico que prepararon: MEF2016-Amezcua-Chavez-Reyes-COLIMA

Aquí pueden ver el video promocional de su proyecto: Death by carbon monoxide: Searching for sensor materials to reduce it

Les invito a que feliciten a estos estudiantes en la sección de comentarios del video (y aquí).

pavel-oscar-2016

 

 

 

 

 


Un rayito de esperanza

enero 17, 2016

Se puede decir que estoy un poco gris. Por un lado la época parece exigir que solo hablemos de cosas dulces y alegres. Ver hacia delante con optimismo y hacer planes para un nuevo ciclo. Todo son deseos maravillosos y sonrisas pasajeras. En otras palabras, es una época llena de frases de libro barato de superación personal y de una gran diabetes emocional. Por otro lado la realidad a la que nos enfrentamos es dura y fría. Pareciera que lo mejor es tratar de olvidarla o ver para otro lado. Si no lo hacemos y la tratamos de enfrentar, el optimismo y los buenos deseos se tornan un poco más austeros. Esto me hace recordar algo que me sucedió hace apenas unas semanas, a inicios de diciembre.

Por ahí de cada dos o tres meses sufro una pequeña crisis existencial. De repente todo me parece inútil y me pregunto – o más bien me reprocho – si ha valido la pena el hacer este o aquel esfuerzo. En esos momentos podría parecer que todo se derrumba, o peor aún, que en realidad no se ha logrado construir nada que pueda derrumbarse.

Permanezco en ese estado un par de días, quizá una semana. Luego poco a poco voy saliendo y vuelvo a la normalidad. No pasa nada, todo va bien: a seguirle.

Pueden ser varios los factores que de repente me ayudan a salir de uno de esos baches, pero afortunadamente siempre salgo y creo que, irónicamente, esos episodios resultan ser útiles. No lo sé.

Lo que sí sé es que en esos días de diciembre andaba como queriendo caer en ese estado de desánimo y sucedió algo que lo impidió. Tuve la oportunidad de participar dando una charla sobre “el Higgs, los neutrinos y otras rarezas” a los participantes del “Taller de Ciencia para Jóvenes 2015”, evento que organiza la Facultad de Ciencias de la Universidad de Colima, como parte de las actividades del Instituto Heisenberg para estudiantes de nivel medio superior.

Esta es la segunda vez que lo organiza y consiste en seleccionar a una veintena de estudiantes de todo el país que se encuentren cursando el quinto semestre de bachillerato. Los reclutan y los “encierran” durante una semana en la que los exprimen al máximo, trabajando de las nueve de la mañana a las once o doce de la noche. Les imparten varios cursos e invitan a científicos locales a que platiquen con los estudiantes sobre sus investigaciones, vidas, etcétera.

segundo-taller

Esta vez tuve la oportunidad de hacerlo justo antes de que clausuraran el taller y la pasé de maravilla. Lo disfruté porque vi la chispa en los ojos de los estudiantes. Estuve platicando con un grupo de mocosos que además de emocionarse con temas científicos y tener una curiosidad genuina, les gusta trabajar y esforzarse. Ver esa sed de aventura, de conocimiento, en ojos de esa edad, es algo que permite, ante cualquier circunstancia, recuperar esperanza.

Me dijeron que quieren estudiar algo de ciencia. Que les interesa la energía renovable, la biotecnología, la química. Otros matemáticas y física. Hay quienes dicen estar orientados hacia lo computacional. Todos con inquietudes y dudas, pero con mucho entusiasmo. Dicen querer mejorar al país. Manifiestan su interés en que las cosas cambien. Aún no saben bien a bien qué es lo que quieren (aún cuando dicen saberlo), pero están en esa búsqueda y tienen ganas, muchas ganas. Por alguna razón creen que con esfuerzo y dedicación se puede mejorar, y les doy la razón. Quiero darles la razón. Me entusiasmo.

 


Medallas por desveladas

diciembre 2, 2013

Había dos problemas y tenían que escoger uno. Eligieron el que decía: “enviar cargamento a órbitas bajas en la Tierra con cohetes tradicionales es muy caro: $15,000 dólares por kilogramo. Si se pudiera construir una torre lo suficientemente alta, los cohetes podrían ser lanzados desde la parte superior de la misma y se reduciría el costo de envío. ¿Cuánto costaría lanzar un cargamento de 10,000 kilogramos desde torres de diferentes alturas?”

Una vez decidido el problema a resolver, pasaron las siguientes 48 horas encerrados en mi oficina de la Facultad de Ciencias (de viernes a domingo) trabajando en la solución. Tuvieron que investigar sobre diferentes tópicos como mecánica, física de cohetes, química y no sé qué más. Eran tres estudiantes y cuando empezaron a desarrollar su solución matemática al problema, fue necesario escribir un código para poder resolver las ecuaciones diferenciales. El código no salía. No proveía de soluciones razonables, algo tenía que estar mal. Ya había transcurrido un día completo y uno de ellos se quedó dormido en la tasa del baño. Los otros no tenían energía ni para poder burlarse adecuadamente y por lo tanto, desgraciadamente, no existe una fotografía.

bronceDescansaron un poco (muy poco) y de repente el programa decidió cooperar, es decir, finalmente lograron programar algo razonable. Entusiasmados empezaron a obtener resultados y analizaron los posibles casos. Conforme la computadora generaba más datos, se dieron cuenta que faltaban ya pocas horas para enviar sus resultados. Empezaron a escribir frenéticamente y preparar su reporte, que “obviamente” tenía que ser en inglés y en el formato de un artículo de investigación. Era además una regla que, para seguir formando parte de la competencia, el documento fuese enviado por correo electrónico antes de las 17:00 horas. Yo sabría si lo lograrían o no, ya que el mensaje iría con copia para mí. Me encontraba disfrutando una helada cerveza mientras checaba mi correo. El reloj decía 16:55. Nada. Una segunda mirada y eran las 16:59. Nada. Empecé a sospechar que algo andaba mal. 17:01 y llega el mensaje deseado. Unos minutos de angustia y finalmente se recibe un mensaje de los organizadores aceptando el documento. Se salvaron.

Así como ellos, otros 77 grupos alrededor del mundo enviaron en tiempo y forma sus soluciones. “Nuestro” equipo, formado por estudiantes del quinto semestre, recibió la noticia un mes después de que se habían hecho merecedores de una medalla de bronce. Estábamos contentos.

Se llama “The University Physics Competition” y es un concurso a nivel internacional para estudiantes de licenciatura. Se creó en el 2010 y la anécdota contada corresponde a la primera participación de un equipo colimense en el 2011. Primera participación y una medalla de bronce no está nada mal.

El año posterior, el 2012, el mismo equipo obtuvo una medalla de plata y además, un segundo equipo, formado por tres estudiantes de tercer semestre, obtuvo una mención honorífica. Si, tres tipos de tercer semestre. Hasta este momento son los mejores resultados para equipos de instituciones mexicanas.

En ese 2012 también hubo dos posibles problemas y cada equipo tuvo la opción de escoger uno. Resultó que escogieron diferente (todo desde luego hecho de manera independiente ya que los dos grupos no debían, bajo ninguna circunstancia, interaccionar). El problema elegido por el equipo ganador de medalla de plata consistió en lo siguiente: “Mercurio y la Luna no tienen volcanes activos en la actualidad, mientras que la Tierra y Venus sí. Esto se debe en gran medida a que tanto la Tierra como Venus son planetas (objetos) más grandes y por ende sus interiores no se han enfriado tanto desde la formación del sistema solar. Los astrónomos han descubierto recientemente una población de planetas extrasolares llamados súper-Tierras, mundos con masas varias veces mayores a la de la Tierra. ¿Cómo variaría con el tiempo el nivel de actividad volcánica de planetas parecidos a la Tierra con masas que varían de la mitad a tres veces el tamaño de la Tierra?” El equipo que obtuvo la mención honorífica trabajó en el segundo problema que decía: “en el año 2000, la Federación Internacional de Tenis de Mesa (ping pon) cambió el diámetro de la pelota oficial de 38 a 40 milímetros. El propósito fue incrementar los efectos de la resistencia del aire para que el juego se hiciera más lento, y por ende fuese más divertido como deporte televisado. Si el diámetro fuera incrementado aún más, ¿ayudaría a que el deporte fuese incluso mejor como espectáculo televisivo? ¿Cuál sería el mejor diámetro para la pelota tal que el juego fuese lo más divertido posible para el espectador?”

Este tipo de problemas requieren no solo conocimientos generales de varias disciplinas, sino también (y quizá más importante) la habilidad de diseñar posibles soluciones y modelos que permitan investigar diferentes escenarios. Mucha creatividad acompañada de conocimiento técnico y analítico.

Mientras ustedes leen estas líneas, en caso de que las estén leyendo el día de su publicación, los tres individuos (ahora en quinto semestre) están atacando, disfrutando, saboreando y soñando con el problema elegido de esta edición 2013 del concurso. Afortunadamente no están solos: otro equipo se les ha unido en la competencia y, para hacerlo más sabroso, es un equipo de tres mujeres (dos de tercer semestre y una de quito).  Luego les cuento cómo les fue.


Perfiles científicos: ELENA CÁCERES

abril 28, 2013
Elena

Elena

Con el propósito de presentar y dar a conocer ante nuestra comunidad (universitaria y en general) a algunos de los científicos más sobresalientes de la Universidad de Colima, presentamos esta breve e informal entrevista. En esta ocasión nos responde la Dra. Elena Cáceres, quien se cuenta adscrita a la Facultad de Ciencias y al Centro Universitario de Investigación en Ciencias Básicas.

¿De dónde eres, dónde creciste?

Soy de Lima, Perú. Crecí en Lima, en el distrito de Breña, en el centro de la ciudad.

Si recuerdas, ¿a qué querías dedicarte cuando tenías alrededor de 10 años?

A los 10 años quería ser “Jefe”. De qué o de quién no importaba, solo quería ser Jefe.

No es que me gustara mandar, eso me era indiferente — o por lo menos no lo recuerdo. Lo que me disgustaba profundamente era tener que obedecer. La única manera de escapar de eso “cuando fuera grande” me parecía era ser “Jefe”. Esa era toda mi aspiración, ser Jefe para que nadie me diga que hacer y que no hacer.

¿Porqué decidiste dedicarte a la ciencia? ¿recuerdas cuándo sucedió?

En el bachillerato tuve un profesor de física muy bueno. A diferencia de mi profesor de matemáticas, que era un señor viejito que casi se dormía dictando clase, el de física era un estudiante de ingeniería con entusiasmo, buen carácter y que sabía de lo que hablaba. No usábamos ningún texto, él llegaba y nos contaba lo típico sobre planos inclinados, poleas o proyectiles, pero lo hacía con tal pasión que capturaba nuestra atención. Fue en esos años que empecé a pensar que ser físico debe ser divertido.

¿En dónde estudiaste tu doctorado y porqué ahí?

Hice mi doctorado en la University of Texas at Austin (USA). Fui a USA porque había escuchado que ahí ofrecían “becas” para los estudiantes de doctorado. Estuve un par de años en Francia y sabía que estudiar un doctorado y trabajar a tiempo completo es muy difícil, así que necesitaba algún sitio donde ofrecieran ayuda económica. En ese entonces no tenía ni la más remota idea de qué universidades en USA eran buenas o no. Como tenía opción a postular a 4 universidades escogí 2 sitios donde me gustaría vivir (Hawaii y Alaska), UT Austin porque había un premio nobel en altas energías – así que debía ser un sitio OK y Columbia porque la había escuchado mencionar en alguna película (¿Woody Allen?). Queda claro que en ese tiempo no me tomaba lo de la “carrera” muy en serio. Recién cuando llegue a Austin empecé a pensar en mi misma como una física de verdad.

¿Describe brevemente que hiciste en tu tesis de doctorado?

Teoría de cuerdas es una teoría en 10 dimensiones. Como observamos solo 4 dimensiones existe en teoría de cuerdas un mecanismo llamado “compactificación” que postula que las dimensiones extras – las que no vemos – están enrolladas en una variedad de 6 dimensiones. En mi tesis de doctorado analicé cuán grande puede ser esta variedad 6-dimensional, cuáles son las restricciones en su volumen.

¿Dónde has trabajado?

He trabajado en la University of California at Los Angeles, en el International Center for Theoretical Physics de Trieste, Italia, en Brown University, en el CINVESTAV y en la Universidad de Colima.

¿Cuándo llegas a Colima? ¿porqué Colima?

Llegue a Colima en 2005. Antes estuve dos años en el CINVESTAV y me me sentía muy cómoda en México. La cultura, la sociedad mexicana es muy similar a la peruana y quise quedarme en México. Cuando enseñé en Brown no sentí ninguna conexión con los estudiantes, no me identificaba con ellos para nada. En cambio en México es como estar en Perú, enseñar acá es gratificante emocionalmente.

En los dos años que estuve en el DF pude vislumbrar muchos defectos del ambiente académico: endogamia, proteccionismo, aislamiento intelectual, falta de competencia, etc. Pero lo que más me perturbaba es que todos esos defectos se tomaran como “normal”. Nadie parecía poder o querer hacer las cosas de una manera diferente. En Colima encontré un grupo de profesores que justo luchan contra todo eso, que trabajan con estándares internacionales, que tratan de cambiar y mejorar su entorno, que comparten mi visión de ver las cosas.

¿En qué trabajas actualmente?

Hago teoría de cuerdas; trabajo principalmente en aplicaciones de la dualidad gauge/gravedad también conocida como AdS/CFT o como holografía.

Se dice que la ciencia es una actividad útil a la sociedad y que los países deben apoyarla. ¿Estás de acuerdo con eso? ¿Porqué? Tu trabajo ¿de qué sirve o para qué puede servir?

Esta es una pregunta muy amplia, con muchos ángulos y es difícil contestarla en toda generalidad.

Es claro que países en crecimiento, como México, no llegarán a ser países “desarrollados” si no hay apoyo para la ciencia. Se necesita poder crear y adaptar tecnología a las necesidades locales. Un ejemplo es el desarrollo de la investigación en agricultura del maíz en México. No apoyar a la ciencia y tecnología mantiene a un país en una situación de dependencia al tener siempre que importar los conocimientos científicos y la tecnología necesaria.

Si hablamos específicamente de física, algunas ramas tienen aplicaciones tecnológicas o comerciales muy directas; es fácil argumentar la utilidad de los láser y los microscopios de efecto túnel. Por otro lado, hay campos, como el mio, que son muy abstractos y que no tienen ninguna aplicación utilitaria a la vista. Todos los físicos esperamos que nuestras teorías – por más abstractas que sean – sirvan para entender fenómenos de la naturaleza. Y esa es la meta, para eso “sirve” lo que hago, para entender mejor el universo. Queremos contestar preguntas como ¿por qué vivimos en 4 dimensiones? ¿que pasó justo después del Big Bang? ¿qué pasa en el interior de un agujero negro? Las respuestas contribuirán al edificio del conocimiento humano y eso debe ser apoyado.

Aparte de la ciencia, ¿qué otros intereses “fuertes” tienes?

Diría que me gusta el arte en general; la pintura y la literatura en especial.

Si no te dedicaras a la ciencia, ¿qué te gustaría hacer?

Me gustaría ser grafitera. Pintar graffitti en las paredes, las veredas y en los buses. Hacer arte que no se puede comprar porque esta en la calle y pertenece a todos.

Si tuvieras que dar UNA recomendación a una persona que actualmente está pensando a qué dedicarse, ¿cuál sería?

Que no le hagan caso a nadie y decidan por si mismos.


Cazando fantasmas

abril 15, 2013

Prácticamente no interaccionan con nada. Si llenáramos el espacio exterior con agua podrían atravesar, en promedio, una distancia aproximada de 7 años luz sin interaccionar con los protones y neutrones del agua. Esta situación representa un problema ya que para cazarlos se requiere que interaccionen con nuestras trampas.

ghostbusters-2-1-1024Bueno, en realidad no son fantasmas. A diferencia de éstos nuestros protagonistas si existen y – aunque difícil – hemos podido detectarlos y estudiarlos. Se les conoce como neutrinos y el primero fue descubierto en 1956. Desde entonces hemos descubierto que existen tres tipos distintos y de que, contrario a lo que se creía en un principio, tienen masa. Pequeña, pero tienen.

Algo muy interesante de los neutrinos es que a pesar de ser difíciles de detectar son las partículas más abundantes en el universo. Las estrellas funcionan gracias a la fusión nuclear que consiste en la unión de dos átomos en otro más pesado y energía. Esa energía se manifiesta en forma de fotones (luz) y neutrinos. Para darnos una idea del número de neutrinos producidos en una estrella les pido que observen la uña de uno de sus dedos, el que sea, no importa. Bien, pues cada segundo atraviesan su uña alrededor de cien mil millones de neutrinos producidos por el Sol.

¿Y entonces cómo los detectamos? Como dijimos antes, en promedio los neutrinos atraviesan todo sin interaccionar. En promedio significa que unos atraviesan más, otros menos, pero que la mayoría atraviesan alrededor de los 7 años luz. Obviamente para detectarlos necesitamos que al menos algunos de ellos interaccionen en una distancia mucho menor a 7 años luz. De hecho, si queremos detectar neutrinos que se produjeron en el Sol, necesitamos que interaccionen dentro de unos 8 minutos luz, es decir, dentro de la distancia entre el Sol y la Tierra. Peor, como no podemos llenar de agua el espacio entre el Sol y la Tierra, en realidad lo que necesitamos es que los neutrinos interaccionen dentro de algún recipiente con agua que podamos fabricar. Lo único que nos puede salvar y hacer posible la detección es precisamente el hecho de que el Sol produce una cantidad enorme de neutrinos. La mayoría – la gran mayoría – atravesará la Tierra y los detectores que construyamos sin dejar ningún rastro, pero es posible que algunos pocos si logren interaccionar y que seamos capaces de registrar esa interacción. ¡Es una locura!

La interacción: Lo que esperamos es que uno de ellos colisione con un protón del agua. Esta colisión hará que el intercambio de energía genere la creación de otras partículas. Una de ellas será un positrón, que debido a la gran cantidad de energía intercambiada se moverá con una rapidez superior a la de la luz en el agua (nada viaja más rápido que la luz en el vacío, pero la luz viaja más despacio en el agua, así que es posible que un positrón viaje más rápido que la luz en el agua) y ésto generará un tenue destello de luz muy específico que se puede buscar y registrar.

neutrino_detector_super_kamiokandeDetector: Necesitamos un tanque de agua lo más grande posible. Este tanque de agua deberá tener en sus paredes algo que sirva como receptor de luz para poder detectar los destellos generados por los rápidos positrones. Además, para estar seguros de que lo que le pegó a los protones del agua fueron los neutrinos y no alguna otra partícula metiche que anduviera viajando por ahí, necesitamos poner el tanque en el interior de una mina o una montaña para que la roca absorba cualquier otra partícula impostora. ¡Así se cazan los neutrinos!

¿De dónde vienen los neutrinos? Los neutrinos son producidos en cualquier tipo de reacción nuclear. Nosotros emitimos positrones y neutrinos a cada rato, debido al potasio inestable que tenemos en nuestro cuerpo. La Tierra produce radiación en su interior (eso es lo que calienta el material que sale del volcán) y por lo tanto emite neutrinos. Sin embargo para poder detectarlos necesitamos que se produzcan en cantidades inmensas. Hay tres fuentes principales que utilizamos. Una: el Sol. Otra es la atmósfera. En este caso son los rayos cósmicos (principalmente protones) que vienen del espacio exterior y colisionan con los gases de la atmósfera generando cantidades importantes de neutrinos. NeutrinosFinalmente la tercera fuente son los reactores nucleares construidos por nosotros mismos. Otra fuente interesante son las supernovas, estrellas que mueren en una gran explosión liberando cantidades inmensas de neutrinos. El problema con éstas es que necesitamos esperar a que estalle una para poder recibirlos, no representan una fuente constante de neutrinos (por eso no la cuento como parte de las 3 principales).

Un comentario final: el Sol produce fotones (la luz que nos llega y es responsable de la fotosíntesis y tu vida) y neutrinos. Un fotón producido en el interior del Sol colisiona con los protones y neutrones presentes en el medio solar y tarda en salir y llegar a nosotros alrededor de un millón de años. Los neutrinos no interaccionan y salen inmediatamente. Entonces, para poder ver el interior del Sol como es ahora, necesitamos ver los neutrinos, no la luz. Para ver el interior del Sol tenemos que ir a un tanque de agua situado en el interior de una mina a buscar un pequeño destello de luz producida por un positrón que a su vez fue producido por un neutrino solar. Maravilloso.

¿Y de qué sirve todo esto? ¿ideas?


Una idea descabellada, insensata

abril 7, 2013

Al contemplar nuestro alrededor nos damos cuenta que existe una multitud de objetos con características muy distintas. Colores, texturas, formas, olores, consistencias, temperaturas y sabores que nos invaden y dentro de los cuales existimos. Al contemplarlo con calma nos damos cuenta que no es obvio encontrar patrones o semejanzas en dicha vastedad de propiedades. ¿Qué puede tener en común la sangre humana con la pantalla de un televisor? ¿En qué se parece la hoja de papel en que están escritas estas palabras y el ojo de un sapo? ¿La arena caliente y seca del desierto comparada con las escamas de un pez?

Hace mucho tiempo surgió una idea descabellada: todo lo que existe está hecho, conformado, por unos cuantos elementos básicos. Unos cuantos entes fundamentales a partir de los cuales todo – si todo – lo que existe en el universo está formado. Estarán de acuerdo en que suena descabellado, demasiado simple ¡Sencillamente absurdo!

atoms1Con la aparición de la ciencia hemos ido adquiriendo un poco de conocimientos acerca de la naturaleza. Tenemos una herramienta que nos permite poner a prueba las ideas, aún las más descabelladas, y ver si tienen algo de razón o si son simplemente erróneas. Aunque estamos de acuerdo en que la idea arriba mencionada es descabellada, no deja de ser interesante y atractiva. De ser cierta podríamos intentar explicar todo lo que nos rodea a partir de sus elementos básicos. Tendríamos la oportunidad de intentar comprender toda esa vasta e intimidante gama de fenómenos a partir de algo simple y sencillo. ¡Es obvio que tenemos que averiguar si la idea tiene algo de sentido!

¿Cómo empezamos? Lo primero que se nos ocurre es agarrar una muestra de algún material y cortarla en trozos lo más pequeños posible. Luego podemos hacer lo mismo con otro material y comparar los trozos. Claro está que para poder cortar los trozos cada vez más pequeños necesitaremos utilizar cuchillos cada vez más delgados y filosos. Llegará un momento en que será imposible utilizar un cuchillo y tendremos que recurrir a algún otro método para cortar. Tendremos que inventar nueva tecnología que nos permita hacerlo.

Los primeros logros en esta dirección se dieron durante el siglo XIX. La química y la física permitieron ir desentrañando una aparente estructura básica en todos los materiales que se analizaban. Con la tecnología de ese momento se empezó a constatar que existían ciertas sustancias que al tratar de dividirlas ya no se podía. Los científicos de la época se apresuraron a determinar si existía un número finito de dichas sustancias y cuáles eran sus propiedades. Así se fueron descubriendo los llamados elementos químicos: sustancias que ya no pueden ser separadas en otras. Sustancias inseparables, indivisibles. Llenos de entusiasmo por tan impresionante descubrimiento, los científicos de la época

se emocionaron y declararon haber encontrado los entes fundamentales a partir de los cuales todo está formado. A las sustancias les llamaron elementos químicos (por ejemplo oro, hidrógeno, tungsteno, etc.) y a los entes fundamentales de cada sustancia átomos (en nuestro ejemplo átomo de oro, de hidrógeno, de tungsteno, etc.).

periodic-coolEntonces, ¿es cierto que los átomos son los bloques básicos fundamentales a partir de los cuales está formado todo? Pues no. Tuvimos un momento de euforia y nos adelantamos a nombrar indivisible a lo divisible y, para que no se nos olvide el error, les hemos dejado el nombre de átomos a esas estructuras que encontramos y que parecían indivisibles. En efecto, todos los objetos que podemos ver están formados de átomos, sin embargo, como veremos en otro momento, los átomos son divisibles en entidades aún más pequeñas: quarks y leptones.

Antes de irnos recordemos que nos trajo hasta aquí. Partimos de la descabellada y absurda hipótesis de que todo lo que existe en el universo está hecho de algunos entes fundamentales básicos. Al descubrir lo que ahora llamamos átomos nos percatamos de que efectivamente todo parece indicar que la hipótesis es correcta. Ahora sabemos que los átomos en realidad si son divisibles y también conocemos de qué están formados. En el camino hemos desarrollado una impresionante cantidad de tecnología que ha podido ser también utilizada en muchas aplicaciones de la vida cotidiana. El ejemplo quizás más evidente es el internet, creado en el CERN, laboratorio donde se ha estudiado este tipo de problemas desde hace décadas. Es asombroso que una idea tan aparentemente ingenua y contraria a nuestra intuición, haya revolucionado nuestro entendimiento de la naturaleza y la forma en que vivimos. Más de las veces la naturaleza nos ha enseñado, a través de su estudio detallado y cuidadoso, que la realidad puede ser muy diferente a nuestras ideas preconcebidas. Casi siempre hemos tenido que cambiar la forma de pensar. En la ciencia se requiere una mente abierta, es decir, una mente inquisitiva, crítica y que además, ante la evidencia confirmada, sea capaz de reconocer que se equivoca.

Entonces, ahora si para poder irnos, les pido el siguiente favor. Piensen en la cosa (objeto) más desagradable que puedan imaginar. Ahora piensen en el objeto más bello y placentero que puedan imaginar. Bueno, ambos, y ustedes, están hechos exactamente de lo mismo.


Planck

abril 2, 2013

expanding_universeEl universo está en expansión. Esto significa que cada instante el universo crece y es más grande, pero no solo eso, ¡bastaba más!, sino que el ritmo con el que crece es cada vez mayor: se expande aceleradamente. Algo interesante es que no sabemos por qué sucede ésto, es un misterio que aún no hemos podido resolver. Lo que si sabemos es que llegará un momento en que todo lo que hay en el universo estará tan separado de todo lo demás, que prácticamente todo terminará solo y aislado (todos los todos utilizados fueron totalmente intencionales). No se podrán ver las galaxias ni prácticamente ninguna estrella. Claro que para cuando eso pase, pensando en términos humanos, ya no habrá ni Sol ni Tierra ni muy posiblemente humanos (ni el plástico que tanto alarma a algunas personas) así que tampoco se preocupen demasiado. Mejor, en caso de que no lo hagan ya, aprovechen el momento y de vez en cuando volteen hacia arriba por las noches, sobre todo cuando no haya Luna. Es maravilloso.

Todo lo visible en el universo está hecho de quarks y leptones, y eso corresponde aproximadamente a un 4% de la energía (materia y energía son prácticamente lo mismo). Del resto de la materia/energía, que por cierto no podemos ver porque no interacciona con la luz y por eso no la incluimos en el universo visible, a un 27% llamamos materia oscura y al 69% restante le llamamos energía oscura. Esta última está asociada a la expansión acelerada del universo y no tenemos idea de qué es. Tampoco sabemos qué es la materia oscura. Sabemos que existe gracias a que interacciona gravitacionalmente, pero no sabemos de qué está hecha. Bueno, sabemos un poco: no está hecha de quarks ni de leptones, pero hasta ahí llegamos. Tenemos varias ideas y propuestas para explicar la materia oscura y actualmente se están llevando a cabo varios experimentos alrededor del mundo tratando de confirmarlas, pero todavía no sabemos. Es un misterio y por lo tanto un problema abierto que está ahí esperando a alguien que lo pueda resolver. Por cierto, una de mis propuestas ya fue descartada con el descubrimiento del Higgs hace unos meses (pero no lloro, me aguanto).

Una aclaración: es importante mencionar que les llamamos “oscuras” gracias a nuestra inmensa capacidad lírica – y porque no interaccionan con la luz. Si, a veces nos pasamos.

Entender la materia oscura es fundamental para poder explicar cómo es que se formaron las estructuras de materia que existen en el universo, como por ejemplo los grandes cúmulos de galaxias. Cuando los cosmólogos y astrofísicos tratan de reproducir el universo con sus modelos matemáticos y sus super clusters de computadoras, necesitan tener información lo más precisa posible para poder simular la evolución del universo y determinar si sus teorías y modelos funcionan. Me gusta verlos sufrir cuando después de varias semanas de estar “corriendo” sus programas en sus super computadoras, descubren que se les olvidó incluir alguna cosita y tienen que empezar de nuevo (definitivamente no es un buen momento para ir a sus oficinas e invitarles un café, no lo toman muy bien). Recuerdo por ejemplo cuando César Terrero, colega cosmólogo de la Facultad de Ciencias de la Universidad de Colima, al estar corriendo unos programitas en una computadora de escritorio, la quemó – literalmente – la computadora empezó a sacar humo por todos lados y el edificio adquirió un aroma maravilloso. Por supuesto que lo mejor de todo fue, insisto, verle la cara.

planck-satelliteHace unos días empezaron a salir finalmente los resultados obtenidos por el satélite europeo Planck (llamado así en honor a Max Planck), el cual estuvo recabando información mientras orbitaba el planeta durante los últimos años. De la información recabada han empezado ya a salir los datos más precisos hasta hoy en lo referente a la densidad de energía oscura, materia oscura y materia “ordinaria” (de la que estamos hechos nosotros), entre otras cosas. Las implicaciones de los datos obtenidos apenas se empiezan a analizar con detalle por científicos en todo el mundo. De manera preliminar todo apunta a que se sigue reforzando, cada vez de manera más detallada, la teoría del Big Bang, incluyendo una pieza muy importante que se llama inflación y que hasta ahora aún no ha sido completamente verificada (después les platico qué es inflación, pero por ahora comento que no tiene nada que ver con economía). Planck sin embargo parece darle mucho sustento y la raza (léase cosmólogos) está muy entusiasmada. Veremos que pasa en los siguientes meses en que los expertos de todo el mundo utilicen estos nuevos datos para hacer sus estudios.

Por lo pronto esta situación a lo mejor forzará a Omar, estudiante de César, a tener que trabajar el doble para terminar su tesis de licenciatura. ¿Porqué? Pues simplemente porque no pudo terminar de correr sus programitas antes de que Planck sacara sus nuevos datos y ahora seguramente tendrá que modificar sus códigos para incluirlos. Y desde luego los demás simplemente disfrutaremos verlo un poquito estresado. ¡Ah! Lo bello de trabajar en temas de relevancia actual.

twitter: @alfredoaranda

facebook: Fefo Aranda