Estrellas

diciembre 3, 2013

sirius_La vida y todo lo que hay en este planeta es consecuencia de las estrellas. No solo en este planeta, pero como nos gusta sentir que somos privilegiados y que representamos – por alguna razón – lo más importante de la naturaleza, pues digámoslo así.  Cuando digo consecuencia me refiero a que sin las estrellas no existirían los materiales para formar los planetas, ni la energía necesaria para que hubiera vida en el nuestro. Aquí digo nuestro porque no hemos encontrado vida en ningún otro, aunque en caso de existir, sería la energía de alguna o algunas estrellas la que le hubiera permitido hacerlo.

¿Qué es una estrella? Una estrella es un constante “jaloneo” entre átomos de hidrógeno. Bueno, principalmente de hidrógeno, ya que con el tiempo las estrellas van produciendo otros elementos. En el “jaloneo” participan las cuatro fuerzas de la naturaleza que conocemos: gravitacional, electromagnética, nuclear fuerte y nuclear débil. Ese “jaloneo” produce elementos químicos diferentes al hidrógeno y una cantidad inmensa de energía, parte de la cual recibimos como luz.

Veamos cómo está la cosa: El material más abundante en el universo, que no necesita de una estrella para existir, es el hidrógeno. Sus átomos son los más sencillos posibles: un protón y un electrón. El hidrógeno no está distribuido de manera uniforme en el universo y existen regiones con mucho y regiones con casi nada. En las regiones ricas en hidrógeno se forman “nubes” que poco a poco, gracias a la atracción gravitacional, se concentran en volúmenes cada vez más pequeños. Llega un momento en que son tan pequeñas que la repulsión entre los protones de los átomos ejercen una presión hacia afuera: la gravedad quiere hacer la nube más pequeña, pero la repulsión electromagnética se siente incómoda y quiere agrandarla. En ese estira y afloja ¡ganará quien pueda “jalar” más! Así muchas nubecitas se quedan nubecitas y otras tantas, que tienen una cantidad crítica de gas (masa), permiten a la gravedad ganar y la nube se sigue contrayendo. Notemos que en este proceso los átomos son sujetos de estiradas y jaladas en varias direcciones y por lo tanto están realizando movimientos rápidos y azarosos. El resultado de todo esto es que la temperatura de la nube, que no es otra cosa que el movimiento de los átomos, va aumentando conforme ésta se contrae.

Vencida la interacción electromagnética, los átomos se concentran cada vez más haciendo que sus protones se acerquen más y más aunque no quieran: la repulsión sigue estando ahí y pone resistencia, pero la gravedad de toda la nube gana y los sigue acercando. Eso sucede hasta que se logra llegar a un tamaño en el que las fuerzas nucleares “se despiertan”. Una vez que los protones casi se “tocan”, y la temperatura llega por ahí de los diez millones de grados centígrados, las fuerzas nucleares (débil y fuerte) empiezan a actuar: los protones en los núcleos de los átomos de hidrógeno (cuatro de ellos) se “fusionan” creando átomos de Helio y liberando en el proceso grandes cantidades de energía en forma de fotones, positrones y neutrinos. Los fotones liberados en ese proceso son reabsorbidos y rebotados por el gas de las capas exteriores durante cientos de miles (a veces millones) de años antes de “salir” de la estrella, para luego llegar a una de las fotoceldas solares que hemos construido, generando electricidad y así permitiéndonos presumir que usamos energía solar, que como vimos no es otra cosa que energía nuclear.

Tamaños-estrellasUna vez que se generan las reacciones nucleares tenemos una estrella. Las reacciones nucleares “detienen” el colapso gravitacional y el “estira y afloja” se compensa quedando una estrellita redondita que como dicen los cuentos y/o películas chafas: vivió feliz para siempre. Bueno, más o menos. En realidad no. El desenlace final de la pelea depende enormemente del tamaño inicial de la nube colapsada. Existen periodos en donde superficialmente pareciera que están en tregua y la estrellita brilla muy bonita y con un tamaño más o menos constante, pero eventualmente, conforme pierde cada vez más energía, la gravedad volverá a ganar y se colapsará un poco más, luego las fuerzas nucleares agarrarán un “segundo aire”, rebotará y volverá a encenderse creando elementos más pesados. Las fases y veces que esto puede ocurrir dependen crucialmente de la masa inicial de la estrella: la muerte de la estrella está dictaminada prácticamente desde el inicio. “Nuestro” Sol, por ejemplo, colapsará y tendrá un rebote que lo hará extenderse más allá de la órbita de Marte (y por supuesto ello hará que los planetas interiores, incluida “nuestra” preciosa Tierra, terminen pulverizados) para luego volver a contraerse finalmente en un objeto medianamente caliente, del tamaño aproximado de Júpiter y sin fusión nuclear. Otras estrellas son más presumidas y mueren en una tremenda explosión en la que generan una cantidad importante de elementos químicos pesados. Son estas muertes, llamadas supernovas, las que producen materiales que luego son utilizados para hacer los teclados de las computadoras en donde se escriben artículos sobre la muerte de las estrellas, entre otras cosas. Otra muerte estelar es la de convertirse en agujeros negros, pero eso ocurre solo para las estrellas obesas.


Higgsmanía

noviembre 4, 2013

Estamos en época de premios Nobel. Obviamente para la comunidad intelectual mexicana (y gran parte de la latinoamericana, creo) los que más se comentan y aprecian son los de literatura, paz y quizás, aunque menos, el de economía. Yo creo que ello se debe, entre otras cosas, a que son prácticamente los únicos en los que se “siente” que tenemos oportunidad de ganar, sobre todo los dos primeros. En fin, que estamos en época de anuncios y que se ha anunciado uno de los premios Nobel más esperados de la historia: el premio Nobel de física por la predicción del Higgs (¡esperó como 40 años!).

Francois-Englert-Peter-HiggsAsí es, el premio Nobel de física se anunció y fue otorgado a dos de las personas que predijeron la existencia de la partícula llamada Higgs, de la cual ya hemos discutido en este espacio y probablemente lo hagamos de nuevo en un futuro cercano. No se lo dieron a los que la descubrieron, al menos no este año. Se lo otorgaron a los que lo predijeron (bueno a dos de los que viven): Francois Englert y Peter Higgs. Espero pronto también comentar un poco sobre los premios otorgados en las áreas de Química y Medicina de este año.

Claro que todos los que de alguna manera estamos relacionados con el campo de la física, especialmente los que nos dedicamos a la física de partículas, estamos muy contentos y nos sentimos felices de este acontecimiento. Es más, ya en plan necio, hasta nos sentimos parte del premio. De hecho, el haber estado trabajando durante décadas en problemas relacionados con la partícula de Higgs, como que le da un sabor especial. Por un lado estamos los científicos que utilizando las ideas relacionadas con el Higgs, hemos ido más allá haciendo múltiples predicciones que están aún por verificarse (o en su defecto descartarse). Por otra parte, imaginen el beneplácito de las personas que estuvieron involucradas en la detección y confirmación de su existencia, cosa que sucedió en el Gran Colisionador de Hadrones o LHC por sus siglas en inglés. En ese colisionador han trabajado miles de personas: desde los que lo diseñaron y construyeron (colisionador y/o detectores), hasta los que participaron en la búsqueda específica de la partícula de Higgs. Existen también muchas otras personas buscando cosas nuevas que estamos esperando con ansia. Independientemente de quienes hayan trabajado específicamente en encontrar al Higgs, todas ellas se encuentran contentas y orgullosas de lo que ese laboratorio y colisionador han demostrado ser capaz de hacer.

mexican-hatEn ese intenso momento de emociones a veces suceden algunas cosas raras, especialmente cuando tenemos una inmensa necesidad de comunicar de manera rápida e impactante, a veces incluso sacrificando veracidad y prudencia. Así pues, en los días (horas) posteriores al anuncio, fue común ver en la prensa mexicana entrevistas realizadas a algunos colegas nacionales en donde, fuera de contexto, se les atribuía el decir que el premio tenía parte para los mexicanos, ya que también hubo mexicanos involucrados en el descubrimiento del Higgs: ¡Por fin un Nobel de física para México! (aunque sea un pedacito chiquititito, ¿no? Ándenle, no sean gachos.). Ahora que han pasado unos días más y que creo que el calor de la noticia se ha diluido un poco, me atrevo a hacer algunas precisiones.

Primero: el premio, como dije arriba, no fue otorgado a las personas que descubrieron el Higgs. El premio se otorgó a las personas (dos de ellas) que matemáticamente, utilizando teorías físicas bien establecidas y verificables, predijeron su existencia (así deben ser las teorías en la física, no son simplemente una idea de alguien; tienen que hacer predicciones verificables). Segundo: el premio lo podemos considerar parte de toda la humanidad, no solo de un país o un estado o del barrio en donde nació la persona galardonada. El premio fue otorgado a la predicción, pero sí gracias a que se ha confirmado su veracidad: ¡el Higgs existe! Por ende ha pasado a formar parte del bellísimo patrimonio humano de conocimiento que hemos logrado generar. Así que festejen todos, no importa de dónde sean. Tercero: en el descubrimiento del Higgs efectivamente participaron algunos científicos mexicanos. ¿Quiénes son? Existen dos “detectores” en el LHC que participaron en el descubrimiento; se llaman CMS y ATLAS. Los mexicanos que participaron directamente en la búsqueda del Higgs son (hay otros participando en otras cosas): Jacobo Konisberg del CMS quien trabaja en la Universidad de Florida, José Feliciano también en el CMS y trabajando en el CERN, Luis Flores Castillo de ATLAS trabajando en la Universidad de Wisconsin, Elizabeth Castañeda de ATLAS y de las Universidades de Wisconsin y Johannesburg e Isabel Pedraza quien un tiempo estuvo en ATLAS y en la Universidad de Wisconsin y más recientemente en CMS trabajando en la Benemérita Universidad Autónoma de Puebla.

A todos ellos una felicitación muy fuerte. Orgullosos debemos estar todos de que hayan logrado contribuir a este descubrimiento tan trascendente para el conocimiento humano.


¿Dimensiones extras?

May 27, 2013

El resultado científico más impactante y trascendente del año pasado fue el descubrimiento del Higgs. Como platicamos hace algunas semanas el Higgs finalmente cayó en las redes y ahora sabemos que si existe. Se buscó durante alrededor de 40 años y para encontrarlo se tuvieron que diseñar y construir aceleradores, colisionadores y detectores de partículas. Esos laboratorios y equipos, sin embargo, no fueron construidos solo para buscar al Higgs, sino que fueron construidos para tratar de descubrir más cosas acerca de la naturaleza.

La búsqueda de conocimiento y el intento de entendimiento de la naturaleza (es decir, de todo) representan unas de las características intrínsecas del ser humano. Buscar y explorar es parte de la misma naturaleza, quien a través de nosotros, es decir, a través de sí misma, se auto-explora e investiga. Y luego resulta también que desde que hacemos ciencia nos hemos dado cuenta de que esas búsquedas casi siempre resultan en ideas y conocimientos que luego pueden ser aplicados en otras áreas y en particular en cuestiones de absoluta practicidad. Ejemplos concretos de ello, relacionados precisamente con los aceleradores, colisionadores y detectores son: el internet – inventado en el CERN – el tratamiento de cáncer con aceleradores de hadrones, el desarrollo de técnicas de imagen en 3D para explorar el cuerpo humano, y un largo etcétera.

accelerator2Una de las cosas interesantes de la forma en que ésto funciona es que, al contrario de lo que podríamos imaginar, las fases iniciales de desarrollo y planeación de este tipo de proyectos de investigación no contemplan la resolución de los problemas prácticos que eventualmente terminan resolviendo. Es decir, cuando se planeaba la construcción del LHC, por ejemplo, no se pensaba en cómo diseñarlo para que pudiera resolver el problema de matar tumores cancerígenos en el interior del cerebro humano. Resulta que la tecnología desarrollada para llevar a cabo el programa de exploración científica del LHC puede ser utilizada y aplicada a otras cosas que conforme avanza el tiempo van surgiendo: ¡es en realidad maravilloso! Y bueno, si no era eso lo que se buscaba, entonces ¿qué se buscaba? ¿A poco lo construyeron solo para buscar el Higgs?

No. El Higgs fue uno de los muchos motivos. Buscamos y esperamos muchas otras cosas que den pistas sobre aspectos muy profundos de la naturaleza. El Higgs ha permitido verificar que la idea que teníamos sobre cómo se genera la masa es correcta, sin embargo quedan aún muchas preguntas y misterios sin resolver sobre ese problema. Por ejemplo, sabemos que existen 12 partículas que conforman la materia que nos conforma a nosotros y todo lo visible en el universo. Una de ellas, quizás la más familiar es el electrón. Otra de ellas, de las últimas en ser descubiertas (1994) es una partícula con el nombre poco amigable de quark top. Al descubrir el Higgs hemos entendido cómo es que las partículas adquieren su masa – por ejemplo estas dos partículas – sin embargo la masa del electrón es una millonésima del tamaño de la masa del top y no tenemos ni idea del porqué (bueno, si tenemos ideas, pero aún no sabemos).

escherOtro problema muy interesante es el de la materia oscura: Existe materia en el universo que no interacciona con la luz y que por lo tanto no la podemos ver. La enorme capacidad lírica de los físicos hace que entonces le llamemos materia oscura. Esta materia interacciona gravitacionalmente y es probable, aunque todavía no sabemos, que interaccione también a través de la llamada fuerza nuclear débil. No sabemos de qué está hecha. Sabemos que no está hecha de las 12 partículas conocidas, pero eso es todo. ¿Ideas? Un montón, pero aún no sabemos cuál – si es que alguna – es la correcta. Otro problema cotorrón: el Big Bang es la teoría que nos describe el origen y evolución del universo. Uno de los descubrimientos más impactantes hecho por los seres humanos es que el universo se está expandiendo: cada vez es más grande – o si prefieren – cada vez fue más pequeño. Hubo un momento en que era tan pequeño que la densidad de energía (cantidad de energía contenida por unidad de volumen) y la temperatura eran inmensamente altas, con valores que nunca hemos experimentado aquí en la Tierra (hasta ahora con el LHC). Al no haber experimentado con esos valores, no podemos estar seguros de que nuestra teoría sea válida en esa etapa de la evolución. De hecho sabemos que a esas escalas de tiempo y tamaño de nuestro universo tenemos que mejorar nuestras teorías, ya que en este momento aún no sabemos cómo reconciliar la interacción gravitacional con las otras interacciones (electromagnética, nuclear débil y fuerte) a nivel cuántico.

fluxUna de las ideas más recientes – relacionada con el problema precisamente de entender a nivel microscópico a la gravedad – contempla la posibilidad de que existan más de las 4 dimensiones que hemos verificado. Obviamente si hay una teoría o modelo que sugiera la existencia de más de 4 dimensiones, la pregunta más interesante es: ¿Cómo lo verifico? ¿Cómo puedo verlas? ¿Cómo son?

El LHC tiene el potencial de explorar y descubrir aspectos de la naturaleza que quizás den pistas y/o confirmaciones sobre las ideas que hemos generado para tratar de dar solución a este tipo de problemas. Muy probablemente también (o más bien) nos enseñe que nuestras ideas y especulaciones actuales son cortas y que existen más fenómenos de los que nos hemos podido imaginar.


Cazando fantasmas

abril 15, 2013

Prácticamente no interaccionan con nada. Si llenáramos el espacio exterior con agua podrían atravesar, en promedio, una distancia aproximada de 7 años luz sin interaccionar con los protones y neutrones del agua. Esta situación representa un problema ya que para cazarlos se requiere que interaccionen con nuestras trampas.

ghostbusters-2-1-1024Bueno, en realidad no son fantasmas. A diferencia de éstos nuestros protagonistas si existen y – aunque difícil – hemos podido detectarlos y estudiarlos. Se les conoce como neutrinos y el primero fue descubierto en 1956. Desde entonces hemos descubierto que existen tres tipos distintos y de que, contrario a lo que se creía en un principio, tienen masa. Pequeña, pero tienen.

Algo muy interesante de los neutrinos es que a pesar de ser difíciles de detectar son las partículas más abundantes en el universo. Las estrellas funcionan gracias a la fusión nuclear que consiste en la unión de dos átomos en otro más pesado y energía. Esa energía se manifiesta en forma de fotones (luz) y neutrinos. Para darnos una idea del número de neutrinos producidos en una estrella les pido que observen la uña de uno de sus dedos, el que sea, no importa. Bien, pues cada segundo atraviesan su uña alrededor de cien mil millones de neutrinos producidos por el Sol.

¿Y entonces cómo los detectamos? Como dijimos antes, en promedio los neutrinos atraviesan todo sin interaccionar. En promedio significa que unos atraviesan más, otros menos, pero que la mayoría atraviesan alrededor de los 7 años luz. Obviamente para detectarlos necesitamos que al menos algunos de ellos interaccionen en una distancia mucho menor a 7 años luz. De hecho, si queremos detectar neutrinos que se produjeron en el Sol, necesitamos que interaccionen dentro de unos 8 minutos luz, es decir, dentro de la distancia entre el Sol y la Tierra. Peor, como no podemos llenar de agua el espacio entre el Sol y la Tierra, en realidad lo que necesitamos es que los neutrinos interaccionen dentro de algún recipiente con agua que podamos fabricar. Lo único que nos puede salvar y hacer posible la detección es precisamente el hecho de que el Sol produce una cantidad enorme de neutrinos. La mayoría – la gran mayoría – atravesará la Tierra y los detectores que construyamos sin dejar ningún rastro, pero es posible que algunos pocos si logren interaccionar y que seamos capaces de registrar esa interacción. ¡Es una locura!

La interacción: Lo que esperamos es que uno de ellos colisione con un protón del agua. Esta colisión hará que el intercambio de energía genere la creación de otras partículas. Una de ellas será un positrón, que debido a la gran cantidad de energía intercambiada se moverá con una rapidez superior a la de la luz en el agua (nada viaja más rápido que la luz en el vacío, pero la luz viaja más despacio en el agua, así que es posible que un positrón viaje más rápido que la luz en el agua) y ésto generará un tenue destello de luz muy específico que se puede buscar y registrar.

neutrino_detector_super_kamiokandeDetector: Necesitamos un tanque de agua lo más grande posible. Este tanque de agua deberá tener en sus paredes algo que sirva como receptor de luz para poder detectar los destellos generados por los rápidos positrones. Además, para estar seguros de que lo que le pegó a los protones del agua fueron los neutrinos y no alguna otra partícula metiche que anduviera viajando por ahí, necesitamos poner el tanque en el interior de una mina o una montaña para que la roca absorba cualquier otra partícula impostora. ¡Así se cazan los neutrinos!

¿De dónde vienen los neutrinos? Los neutrinos son producidos en cualquier tipo de reacción nuclear. Nosotros emitimos positrones y neutrinos a cada rato, debido al potasio inestable que tenemos en nuestro cuerpo. La Tierra produce radiación en su interior (eso es lo que calienta el material que sale del volcán) y por lo tanto emite neutrinos. Sin embargo para poder detectarlos necesitamos que se produzcan en cantidades inmensas. Hay tres fuentes principales que utilizamos. Una: el Sol. Otra es la atmósfera. En este caso son los rayos cósmicos (principalmente protones) que vienen del espacio exterior y colisionan con los gases de la atmósfera generando cantidades importantes de neutrinos. NeutrinosFinalmente la tercera fuente son los reactores nucleares construidos por nosotros mismos. Otra fuente interesante son las supernovas, estrellas que mueren en una gran explosión liberando cantidades inmensas de neutrinos. El problema con éstas es que necesitamos esperar a que estalle una para poder recibirlos, no representan una fuente constante de neutrinos (por eso no la cuento como parte de las 3 principales).

Un comentario final: el Sol produce fotones (la luz que nos llega y es responsable de la fotosíntesis y tu vida) y neutrinos. Un fotón producido en el interior del Sol colisiona con los protones y neutrones presentes en el medio solar y tarda en salir y llegar a nosotros alrededor de un millón de años. Los neutrinos no interaccionan y salen inmediatamente. Entonces, para poder ver el interior del Sol como es ahora, necesitamos ver los neutrinos, no la luz. Para ver el interior del Sol tenemos que ir a un tanque de agua situado en el interior de una mina a buscar un pequeño destello de luz producida por un positrón que a su vez fue producido por un neutrino solar. Maravilloso.

¿Y de qué sirve todo esto? ¿ideas?


Colliders….

septiembre 11, 2012

Acaban de terminar las lectures de Lian-Tao Wang sobre colliders: Superb!

Estuvieron tan buenas que pretendo retomarlas llegando a Colima y repasarlas en detalle. Están invitados!

Mañana sigue el programa y luce prometedor. Espero que Javier pronto nos comparta nuevos comentarios sobre la escuela.

A dormir….


Olindo Corradini en Colima

febrero 21, 2012

Olindo es un investigador de la Universidad Autónoma de Chiapas con quien estamos trabajando en algunos proyectos y vino a trabajar por unos días con nuestro grupo. Aprovechó también para dar un seminario y tomar algo de tequila.

Hemos estado trabajando, junto con Carlos Alvarado, en un proyecto que involucra el estudio de las masas de las partículas en el escenario de dimensiones extras de Randall-Sundrum. Existen algunas posibilidades interesantes que están siendo exploradas y que en un futuro comentaré por aquí.

La idea básica del problema al que nos enfrentamos es la siguiente: en el Modelo Estándar (ME) de las partículas elementales – la teoría más completa y confirmada en la historia de la ciencia – se describen las interacciones de todas las partículas de materia conocidas y se describen MUY bien (son 12: 6 leptones y 6 quarks. Entre los leptones está el famoso electrón. Los quarks son las partículas que forman a los protones y neutrones). Sin embargo, todas estas partículas tienen ciertas propiedades físicas, como su masa por ejemplo, que no son explicadas por el ME. Es decir, dentro del marco teórico sobre el cual está formulado el ME, no existe la posibilidad de explicar las diferentes masas de las partículas. Existe una idea (el llamado mecanismo de Higgs) de cómo se origina la masa en general, pero aún confirmando esta idea (que esperamos se confirme muy pronto en el LHC), no sabríamos por ejemplo porqué la masa del electrón es aproximadamente una millonésima parte de la masa del quark top (el más pesado). Ésto no quiere decir que el ME sea erróneo (estaría equivocado y por lo tanto desechado si predijera valores incorrectos para las masas, pero simplemente no puede predecirlos – predice MUCHAS otras cosas, confirmadas todas), simplemente quiere decir que está incompleto.

Ésto es bueno. Es bueno porque nos permite buscar completarlo – ¡tenemos chamba!

Nuestro trabajo con Olindo consiste entonces, entre otras cosas, de buscar la manera de implementar algunas ideas y escenarios adicionales al ME, para tratar de explicar o echar un poco de luz a este problema.

Olindo y los niños       En plena acción  ¡Trabajando duro!