Y se hizo la luz

julio 28, 2016

 

La luz es una onda electromagnética. Las ondas electromagnéticas pueden tener muchos tamaños. Las hay enormes, con tamaños característicos – llamados “longitud de onda” – de metros o kilómetros o más, y las hay pequeñísimas (de millonésimas de millonésimas de metros). Las más pequeñas que podemos percibir con los ojos tienen una longitud de onda de 4000 Angstroms (un Angstrom es la diezmilmillonésima parte de un metro), mientras que las más grandes andan por los 7000. Podemos pensar en los diferentes tamaños en términos de los colores que vemos: las más pequeñas corresponden al violeta y las más grandes al rojo. Las ondas que caen dentro de ese rango constituyen lo que llamamos “luz visible.” A las más pequeñas les llamamos de manera general ondas o luz ultravioleta. A las más grandotas les llamamos ondas o luz infrarroja.

Los hornos de microondas, los celulares, las estaciones de radio y televisión, los satélites, el “WiFi,” las antenas de cualquier aparato, emiten y/o absorben ondas electromagnéticas. Dependiendo de su uso y descubrimiento, se les ha puesto diferentes nombres, pero todas son lo mismo: su única posible diferencia es el tamaño o longitud de onda.

La luz ha sido estudiada durante mucho tiempo y ello ha permitido aprender cosas muy interesantes sobre la naturaleza. Algo «evidente» es que los seres humanos descubrimos muchas cosas de nuestro entorno precisamente a través de la luz, a través de la vista. Tenemos dos «detectores» (ojos) que reciben luz de diferentes fuentes y que una computadora (cerebro) analiza para determinar ciertas propiedades de los objetos que emitieron o «rebotaron» esa luz. Así sabemos si viene un coche cuando estamos tratando de cruzar una avenida, podemos ver la comida que necesitamos para comer, e incluso podemos hacer cosas mucho más sofisticadas. Por ejemplo podemos ponernos de acuerdo entre varios seres humanos para que ciertos símbolos signifiquen algo, por ejemplo un abecedario y palabras en un cierto idioma. Luego alguien, con un material que absorba la luz que le cae y que no la re-emita (y que por lo tanto veamos de color negro) los prepara en cierto orden en un papel blanco (que rebota toda la luz que le llega) de tal modo que cuando la luz que llega al papel es absorbida en las regiones donde se plasmaron los simbolitos y reflejada en las otras partes del papel. Nuestros ojos reciben la luz de todo el papel, excepto la que absorbieron los simbolitos. Nuestro cerebro, inteligente (a veces más de lo que creemos), identifica esa «ausencia de luz» como una palabra. Eso es precisamente lo que está sucediendo en este momento en que usted, querida lectora, querido lector, está «no viendo» estas letritas impresas en el periódico.

«Vemos» entonces que la luz y su percepción pueden ayudarnos a conocer muchas cosas. Algunas muy cotidianas, otras un poco más sofisticadas. Dentro de las sofisticadas, con un impacto importante en el desarrollo de la humanidad, se encuentra la luz que emiten las estrellas. De alguna manera eso es lo que se hace en la astronomía: estudiar la luz que emiten las estrellas. Viendo esa luz (no solo la visible) podemos aprender sobre las estrellas y el universo. Es posible, por ejemplo, saber de qué están hechas. Determinar cuánto hidrógeno y/o helio tienen. Podemos determinar su edad, temperatura, su vida esperada. Estudiando la luz proveniente de las galaxias (que no es otra cosa mas que luz proveniente de las estrellas que las forman) podemos también determinar si se alejan o se acercan de nosotros. La luz proveniente de ellas nos da información sobre la evolución y desarrollo del universo. Gracias a esa luz, podemos tener una idea concreta, verificable, de cómo es el universo.

 


Códigos estelares

marzo 31, 2015

La luz es una onda electromagnética. La luz es lo que entra en nuestros ojos y crea imágenes que nuestro cerebro interpreta. Es lo que “vemos.”

Las ondas electromagnéticas pueden tener muchos tamaños. Las hay enormes, con tamaños característicos – llamados “longitud de onda” – de metros o kilómetros o más, y las hay pequeñísimas (de millonésimas de millonésimas de metros). Nuestros ojos, producto de la adaptación en el agua del mar y luego en la superficie, han evolucionado para poder recibir e interpretar ondas electromagnéticas de ciertos tamaños únicamente. Las ondas electromagnéticas más pequeñas que podemos percibir (con nuestros ojos) tienen una longitud de onda de 4000 Angstroms (un Angstrom es la diezmilmillonésima parte de un metro), mientras que las más grandes andan por los 7000. Podemos pensar en los diferentes tamaños en términos de los colores que vemos: las más pequeñas corresponden al violeta y las más grandes al rojo. Las ondas electromagnéticas que caen dentro de ese rango constituyen lo que llamamos “luz visible.” A las ondas más pequeñas (que no podemos “ver” con ojos humanos) les llamamos de manera general ondas o luz ultravioleta. A las más grandotas les llamamos ondas o luz infrarroja.que-hace-sr-newton-refleccion-de-la-luz-una-caratula-para-pink-floyd-memes

Los hornos de microondas, los celulares, las estaciones de radio y televisión, los satélites, el “Wi-Fi,” las antenas de cualquier aparato, emiten y/o absorben ondas electromagnéticas. Dependiendo de su uso y descubrimiento, se les ha puesto diferentes nombres, pero todas son lo mismo: su única posible diferencia es el tamaño o longitud de onda. Todas, incluida la luz visible, son ondas electromagnéticas.

La luz ha sido estudiada durante mucho tiempo y ello ha permitido aprender cosas muy interesantes sobre la naturaleza. Algo “evidente” es que los seres humanos descubrimos muchas cosas de nuestro entorno precisamente a través de la luz, a través de la vista. Tenemos dos “detectores” (ojos) que reciben luz de diferentes fuentes y que una computadora (cerebro) analiza para determinar ciertas propiedades de los objetos que emitieron o “rebotaron” esa luz. Así, gracias a la luz que nos llega, sabemos si viene un coche cuando estamos tratando de cruzar una avenida, podemos ver la comida que necesitamos para comer, e incluso podemos hacer cosas mucho más sofisticadas. Por ejemplo podemos ponernos de acuerdo entre varios seres humanos para que ciertos símbolos signifiquen algo (por ejemplo un abecedario y palabras en un cierto idioma). Luego alguien, con un material que absorba la luz que le cae y que no la re-emita (y que por lo tanto nosotros lo vemos de color negro) los prepara en cierto orden en un papel blanco (que rebota toda la luz que le llega) de tal modo que cuando lo sacamos al sol (o a la luz de una de nuestras lámparas), la luz que llega al papel es absorbida en las regiones donde se plasmaron los simbolitos y reflejada en las otras partes del papel. Nuestros ojos reciben la luz de todo el papel, excepto la que absorbieron los simbolitos. Nuestro cerebro, inteligente (a veces más de lo que creemos), identifica esa “ausencia de luz” como una palabra. Eso es precisamente lo que está sucediendo en este momento en que usted, querida lectora, querido lector, está “no viendo” estás letritas impresas en el periódico.

“Vemos” entonces que la luz y su percepción pueden ayudarnos a conocer muchas cosas. Algunas muy cotidianas, otras un poco más sofisticadas. Dentro de las sofisticadas, pero que ha tenido un impacto importante en el desarrollo de la ciencia, se encuentra la de ver y estudiar la luz que emiten las estrellas. De alguna manera eso es lo que se hace en la astronomía: estudiar la luz que emiten las estrellas. Durante mucho tiempo solo se estudiaba la luz visible, y poco, ya que muchas de las propiedades de la luz que nos permiten entender las estrellas fueron descubiertas hace relativamente poco. Luego fuimos capaces de construir “ojos” que vieran ondas electromagnéticas de diferentes tamaños y actualmente podemos ver un una amplia gama de “canales.” Viendo esa luz (no solo la visible) podemos aprender sobre las estrellas y el universo. Es posible, por ejemplo, saber de qué están hechas. Determinar cuánto hidrógeno, helio, etcétera tienen. Podemos determinar su edad, temperatura, su vida esperada. Estudiando la luz proveniente de las galaxias (que no es otra cosa mas que luz proveniente de las estrellas que las forman) podemos también determinar si se alejan o se acercan de nosotros. La luz proveniente de ellas nos da información sobre la evolución y desarrollo del universo. Gracias a esa luz, podemos tener una idea concreta, verificable, de cómo es el universo.

Notemos que vivimos en una época privilegiada. Pensando en términos de lo que conocemos sobre el universo y de nuestras ideas sobre la naturaleza consideren lo siguiente: hace tan solo cien años aún no se sabía que existían galaxias. Se tenían ideas sobre el mundo y el universo, prácticamente desde que hay seres humanos, pero información fidedigna que nos permita contrastar, falsar y por ende mejorar y adaptar nuestras ideas a la realidad, solo la hemos tenido por unas cuantas décadas. ¡Y lo que falta!


Una lucecilla azul

marzo 29, 2015

Lanzo una piedra a un lago tranquilo. Cae al agua y genera ondas que se mueven en todas direcciones formando círculos concéntricos (en realidad son esferas, pero solo vemos una sección). Los círculos avanzan con una rapidez característica del agua, es decir, no importa que tan grande sea la piedra ni con qué fuerza la haya lanzado (o si era un trozo de madera, o una persona), las ondas en el agua del lago siempre avanzan con la misma rapidez. Este fenómeno es bien conocido por la mayoría de nosotros. Lo que me gustaría que recordáramos de ahora en adelante es que la rapidez con que se mueven es siempre la misma: es algo característico del agua.

Si en lugar de lanzar una piedra me fijo en una lancha que avanza tranquilamente por el lago (más lenta que la velocidad de las ondas en el agua), observo que también va generando ondas. Si me fijo con cuidado observaré claramente que las ondas ya no se ven como círculos concéntricos sino que la parte de las ondas que se mueven en la dirección del movimiento de la lancha (enfrente) se van como “juntando,” mientras que las ondas detrás de la lancha se van “separando” cada vez más. Si incrementa la rapidez de la lancha, las ondas se van como “estirando” y eventualmente, cuando la lancha alcanza una rapidez mayor a la de las ondas, forman un frente triangular (en realidad un cono).

Lo mismo sucede con el sonido. Llamamos sonido a perturbaciones (ondas) en el aire. Cuando trueno los dedos estoy “pellizcando” el aire que se encuentra a mi alrededor y este pellizco se transmite a través de una onda en el espacio (mientras siga habiendo aire) hasta llegar a nuestro oídos y ser identificado como un sonido. Así, aunque no las veamos, el sonido no es otra cosa que ondas de presión moviéndose por la atmósfera (o el medio que sea, también puede ser agua, metal, etcétera). En el aire de la atmósfera, al igual que en el caso del agua, las ondas se mueven con una rapidez característica. Por ejemplo a nivel del mar las ondas de sonido tienen una rapidez de 340 metros por segundo.

En analogía al caso de la lancha, cuando escuchamos la sirena de una ambulancia que se acerca a nosotros percibimos las ondas de sonido como “juntándose” y resultando en un sonido cada vez más agudo (incrementa la frecuencia), mientras que al alejarse, las ondas se van “separando” y el sonido nos resulta cada vez más grave. Otra vez, en analogía con el caso de la lancha, si el objeto que produce el sonido se mueve cada vez más rápido, las ondas enfrente del objeto se juntan cada vez más. Cuando el objeto alcance una rapidez mayor a la de las ondas (o sea, cuando el objeto se mueva más rápido que el sonido) se generará también una forma de cono para las ondas que nuestros oídos identifican como un “rugido.” Ejemplos de objetos que hacen eso son: algunas balas, aviones supersónicos o la punta de un látigo.

Hemos visto dos ejemplos de la siguiente situación: un objeto produce ondas en un cierto medio. Esas ondas se mueven con una rapidez que es característica del medio y cuando el objeto que las produce se mueve más rápido que ellas, las ondas forman un cono.

Existe un fenómeno muy interesante relacionado con lo que acabamos de describir. Resulta que una partícula que tenga carga eléctrica, como un electrón (los que se encuentran en todos los átomos y que utilizamos para la electricidad y la electrónica), al acelerar emite radiación, cherenkov-3es decir, luz. La luz es una onda y como todas las ondas tienen una rapidez característica, en este caso la luz se mueve a la ¡velocidad de la luz! Bueno, depende. Me explico. La expresión “velocidad de la luz” se refiere a la rapidez con la que las ondas electromagnéticas se propagan en el vacío. Esa rapidez corresponde además al límite de velocidad en la naturaleza. Sin embargo, la luz puede viajar a velocidades menores, por ejemplo en el agua la luz viaja aproximadamente a tres cuartas partes de su velocidad en el vacío.

Por lo tanto, si se diera el caso de que un electrón (que recordemos emite ondas electromagnéticas al acelerar) viajara por el agua más rápido que la luz en el agua, ¡las ondas electromagnéticas también generarían un cono! A ese fenómeno se le conoce como radiación de Cherenkov y su explicación y verificación mereció un premio Nobel en algún momento.

La radiación de Cherenkov de un electrón en el agua es de color azul y se ve muy bonita. Si llenamos un tanque de agua ultra pura (sin electrones) y lo ponemos a gran altura en una montaña, es posible que cuando rayos cósmicos o fotones de muy alta energía (rayos gama) provenientes del espacio choquen con algún núcleo atómico en la atmósfera terrestre, se generen partículas cargadas a muy alta velocidad. Si algunas de ellas pasan por el agua de nuestro tanque, producirán el cono de Cherencov. Si dentro del tanque ponemos unos “ojos” que puedan verla y registrarla, esa radiación nos puede dar información sobre los rayos cósmicos o gama originales que venían del espacio (¡astronomía!). Eso, en términos muy generales, es lo que hará (ya está haciendo) el recién inaugurado (construido en México) observatorio “HAWC” en el volcán Sierra Negra de Puebla que consiste de 300 tanques y 1200 “ojos” que buscan una lucecilla azul.

Este tema fue a petición de @MeCargaGestas,” espero le guste.

twitter: @alfredoaranda

facebook: Fefo Aranda


Unidad

noviembre 25, 2014

Iba de regreso a casa en el coche platicando con Oskarina. De repente me pidió que le explicara qué es un “año luz,” ya que se le confundía el término. No es raro que genere confusión ya que la palabra “año” se indentifica con el tiempo y la expresión “año luz” se utiliza para describir una distancia. Sí, una distancia, la distancia que la luz recorre en un año. Por eso la confusión.

La distancia la medimos en metros, centímetros, pulgadas. El tiempo en segundos, horas, minutos, años, siglos. La temperatura en grados Celsius (o centígrados), Farenheit o en Kelvin. La velocidad . o rapidez – la medimos en “unidades” compuestas: metros por segundo, kilómetros por hora (la velocidad nos dice cuánta distancia se recorre en una cierta cantidad de tiempo). Otro ejemplo es el volumen, que se mide con las unidades de distancia pero”al cubo,” como metros cúbicos, litros, galones. Existen muchas otras “unidades” que hemos inventado para poder comunicarnos eficientemente y poder comparar lo comparable. Algunas quizá un poco menos conocidas son Newtons, Pascales, Amperes, Joules, Ohms, Hertz, Faradays, etcétera.

Y entonces, si ya existen unidades familiares y comunes para la distancia, ¿por qué inventar una para la luz que además tiene un nombre confuso?

Intentaré contestar la primera pregunta. Es para simplificar y poder hablar de distancias y números extremadamente grandes de una manera más sencilla. Me explico: la luz viaja con una rapidez de 300,000 km/seg. Esto representa una cantidad difícil de imaginar. ¿Cuánto es 300,000 km? ¿Cómo podemos imaginarlo? Por ejemplo, si yo le digo a alguna de ustedes que tienen que caminar 100 metros para llegar a su destino, estoy seguro que tendrán una idea bastante clara de cúanto es esa distancia (una o dos cuadras). Si les digo que tienen que viajar 10 km o 100 km, siguen teniendo una idea muy clara. 1000 km es también, creo, algo tangible. En el momento en que les pida que 10,000 o 100,000 empieza a volverse difícil el “sentir” de qué estamos hablando. Son números que se empiezan a alejar de lo cotidiano, de lo medible por nuestras «manos.» 300,000 km es la distancia promedio entre la Tierra y la Luna. Muy pocos humanos han estado en la Luna (y sí, si estuvieron, no es defícil verificarlo) como para que tengamos “a la mano” esa distancia. Unos cuantos más han salido a darle vueltas a nuestro planeta. Se ponen en órbita y ayudan a instalar satélites, la estación espacial, etcétera. Sin embargo, aun cuando es verdaderamente impresionante lo que hacen, solo “suben” una distancia de alrededor de 300 km de la superficie terrestre, prácticamente nada comparado con la distancia a la Luna. Podemos ponerlo en una escala cotidiana: si la distancia de la superficie de la Tierra a la Luna fuese de 1 metro, los satélites, la estación espacial y los astronautas que andan (anduvieron) en órbita están a 1 milímetro de la superficie terrícola.

300,000 km son muchos. ¿O no? Pues depende. 300,000 km es la distancia al objeto celeste más cercano a nuestro planeta y la luz tarda un segundo en llegar ahí, decimos que la Luna está a “1 segundo luz.” Desde luego que 300,000 km son muchos. Sin embargo, hay un objeto celeste mucho más importante (para nosotros) que la Luna y que tiene que ver con prácticamente todo lo que hacemos: el Sol. “Nuestra” estrella se encuentra a aproximadamente 8 “minutos luz,” es decir se encuentra a la distancia que le toma a la luz viajar 8 minutos. ¿Cuántos km representa esa distancia? Sabemos que la luz avanza 300,000 km en un segundo. En 8 minutos hay 480 segundos, por lo tanto, nuestro querido Sol se encuentra (aproximadamente) a 144,000,000 km. Si 300,000 km eran difíciles de “sentir,” los 144 millones a los que se encuentra nuestra fuente de energía aun menos.

Los que hayan tenido la fortuna de levantar la mirada en la noche saben que el Sol es una de muchas estrellas. La que sigue en “cercanía” a nosotros es una estrella (Alfa Centauri) que se encuentra a una distancia de 37,843,200,000,000 km.

Como un año tiene 365 días, entonces tiene 8,760 horas y por ende 31,536,000 segundos. Si estos últimos los multiplicamos por los 300,000 km/seg correspondientes a la rapidez de la luz, entonces tenemos que en un año la luz recorre 9,460,800,000,000 km. Esta distancia es la que llamamos “año luz.” Alfa Centauri se encuentra entonces (aproximadamente) a 4 “años luz.”

Alfa Centauri, el Sol, y vairos miles de millones de estrallas forman la galaxia llamada Vía Láctea (que es una de millones). De extremo a extremo, la Vía Láctea mide alrededor de 100,000 años luz. En promedio, la longitud de una de nuestras uñas es de 1cm, es decir de la centésima parte de un metro. El ancho de un cabello, es en promedio una cienmilésima de metro (0.00001 metros). El tamaño caracterítico de un átomo es de alrededor de una diez mil millonésima de metro (0.0000000001 metros). El núcleo del átomo es 10,000 veces menor (0.00000000000001 metros).

¿Números sin sentido? A primera vista, puede parecer. Sin embargo, lo maravilloso es que lo sabemos. Lo hemos descubiertto y medido. Somos capaces de hacerlo y me gustaría que reflexionáramos un poco sobre ello, sobre el hecho de que lo sabemos. ¡Hace poco más de un siglo no sabíamos ni que había galaxias ni electrones!


Tú pregúntame …

septiembre 16, 2014

preguntame1Desde hace unos meses y de manera (muy) irregular, hemos estado participando en una actividad denominada “pregúntale al científico.” Se trata de poner una mesa y unas sillas en algún jardín de alguna comunidad, preparar una cafetera y unos letreros que dicen cosas como “pregúntale al científico y tómate un café.” Esperamos sentados y de repente cae la presa (casi siempre una niña): “¿Por qué le sigue creciendo el cabello a los muertos?” “¿Por qué el agua del mar a veces se ve azul?” “¿Qué es la diabetes?” y no puede faltar, nunca, “¿Cuánto cuesta el café?”

Hasta el momento solo lo hemos realizado en el jardín principal de Comala. ¿Quiénes somos? Un grupo de esclavos, perdón, de estudiantes de la Facultad de Ciencias de la Universidad de Colima , Guille, su servilleta, café de Comala (Flor de Suchitlán) y las personas que caminan por el jardín. Tenemos la esperanza de que poco a poco logremos reproducirlo en otras comunidades del estado (¡Inviten!).preguntame2

Al inicio decidimos juntarnos a las 20:00 horas en el jardín. Llegamos unos minutos antes para prepararnos. Colocamos la mesa, preparamos el café y esperamos. Nadie se acercó, había muy poca gente. La segunda vez nos visitó un amigo, Don Gil, quien no contento con bombardearnos con toda clase de preguntas, además nos regañó. Nos dijo – sutilmente – “la están regando” “¿qué no ven que a esta hora no hay gente? ¿pos no que muy listos?” (no es cierto, no nos dijo eso, pero así lo sentimos). “Mejor vengan a las 18:00 horas, les garantizo que les irá mejor.”

Y sí, nos fue mejor. La siguiente reunión fue a la hora sugerida y nos llenamos de gente. Preguntas de todo tipo, especialmente las hechas por las niñas y niños, que fueron y siguen siendo los más interesados. A veces pasan adultos y adolescentes y se quedan mirando los carteles, alejándose. Sin embargo, cuando alguna niña nos ve y lee los cartelillos que ponemos, se acerca (jalando a su papá, quien intentaba alejarse) y empieza a disparar con preguntas. Eso hace que los padres de familia se acerquen y como consecuencia otros adultos. Es bonito.

Los esclavos que me han podido acompañar en esta aventura (científicos en formación sin vida social que por ende tienen tiempo libre los domingos en la tarde) son los que en verdad la han hecho posible. Consiguen la mesa, las sillas, preparan el café, colocan los carteles, etcétera. Ellos son Jorge «el Fantasía» Torres y Julio, participando desde la generación de la idea, y más recientemente Paulina y Brenda.

preguntame3Y como todo en la vida, la suerte a veces ayuda. Resulta que «el Fantasía», oriundo precisamente de Comala, pues conoce a casi todas las personas de la comunidad. Gracias a ello consiguió que nos dieran la oportunidad de dar una pequeña conferencia pública en el jardín, dentro de las actividades culturales que organiza el municipio cada domingo por la tarde.

¿De qué hablaría? Un poco sobre la física de partículas, es decir, sobre las ideas y descubrimientos que hemos realizado en los últimos años al intentar contestar la pregunta: ¿de qué estamos hechos? Cómo, intentando responder esa pregunta, se ha generado prácticamente toda la base tecnológica sobre la que se sustenta la sociedad actual. Sí, el hecho de que algunos “locos” a través de la historia de la humanidad se hayan preguntado ese tipo de preguntas, y más importante, que hayan encontrado una manera eficiente y confiable de buscar soluciones a esas preguntas, ha generado una derrama económica, social y política que modifica y afecta la conducta y la vida de todas las personas. Es por eso importante, creo, que un gran número de personas, aunque no se dediquen a la ciencia, tengan acceso a información y conocimientos científicos, spreguntame4obre todo ¡los que se logran durante sus vidas! Por otra parte, algo que puede ser también muy útil para las personas, es el conocer el “pensamiento crítico y científico.” No necesariamente conocer y saber los detalles de este o aquel conocimiento, sino más bien familiarizarse y eventualmente apropiarse de los métodos que se utilizan para llegar a esos conocimientos. Esos métodos, esa forma de analizar y trabajar las diferentes problemáticas, puede ser de tremenda utilidad en ámbitos no científicos, ámbitos cotidianos y comunes en los que nos desenvolvemos diariamente.

Pues sí, que de todo eso iba a hablar pero no se pudo: se nos atravesó el concurso de reina de kinder de Comala (o alguna cosa similar) y nos cancelaron la conferencia para que las niñas pudieran lucir sus vestidos y sus madres pelear por quien sería la niña consumada en reina (si, en serio, hubo pelea). Así las cosas. ¡Gracias Jorge!

Nos vemos un domingo en algún jardín.


Viendo el Sol y los rayos cósmicos

septiembre 11, 2014

borexinoHabía comentado que para poder “ver” el centro de una estrella, es necesario detectar los neutrinos producidos en su interior. Si (como ejemplo) hablamos de la estrella que tenemos más cerca, el Sol, en su interior se producen constantemente una serie de reacciones nucleares que generan la energía que nos mantiene aquí. Una de esas reacciones se llama “protón-protón,” y es la que genera, en forma de de fotones (luz) y neutrinos, casi toda la energía del Sol. Los fotones pueden tardar cientos de miles de años para “escapar” de la estrella, ya que son absorbidos, emitidos, reabsorbidos, re-emitidos, y así sucesivamente un montón de veces (decimos que la estrella es “opaca” a los fotones), mientras que los neutrinos escapan inmediatamente: en el caso del Sol llegan a la Tierra en aproximadamente 8 minutos.

Supongamos por el momento que, en promedio, los fotones del Sol tardan en “salir” cien mil años. Entonces, cuando nosotros los vemos en la Tierra, si los analizamos con cuidado, podríamos esperar que nos dieran información de cómo era el interior del Sol hace alrededor de cien mil años. Por otro lado, si logramos detectar (ver) y analizar los neutrinos emitidos, quizá podremos obtener información de cómo era el interior del Sol hace ¡tan solo ocho minutos!

vesselinstall-borexinoApenas esta semana, el laboratorio italiano Gran Sasso, que tiene un detector de neutrinos llamado “Borexino,” anunció que lograron hacer precisamente eso: medir, en tiempo real, la energía del Sol. Además encontraron que, comparando los valores deducidos por la luz (los fotones de hace cien mil años), la energía producida en el centro del Sol es la misma hoy que hace cien mil años, lo que da una comprobación directa de que el Sol, nuestra estrella, se encuentra en una etapa de vida con una gran estabilidad. El experimento es resultado de colaboraciones entre varios países europeos (Italia, Alemania, Francia y Polonia), Estados Unidos de América y Rusia, y se tiene contemplado que seguirá tomando datos por al menos cuatro años más. Los resultados que obtendrán, seguramente serán de mucha utilidad e importancia para la física de partículas y la astrofísica.

2014_08_24_LanzamientoEn otras noticias, fue muy agradable enterarnos de que el 24 de agosto se lanzó el telescopio sub-orbital EUSO-Balloon, que es el primer prototipo completo de un futuro observatorio espacial llamado JEM-EUSO, que observará rayos cósmicos ultra energéticos.

En el espacio exterior existen procesos que generan partículas como por ejemplo: protones. Después de ser generadas (por ejemplo en explosiones de estrellas) viajan por el universo y pueden interaccionar con otras o con campos magnéticos generados por otras estrellas o galaxias o cúmulos de galaxias o cosas que aún no conocemos. En su camino pueden también cruzarse con el pedazo de materia que habitamos y llamamos Tierra. Cuando eso sucede, al ingresar a la atmósfera, inmediatamente colisionan con las partículas que forman los núcleos de los átomos de los que están formados los gases, y generan una cascada de colisiones que eventualmente llega a la superficie y se absorben en el agua, piedra, cerebro, o etcétera que se encuentre en el camino. Esto ha estado sucediendo todo el tiempo.

Detectar y estudiar esos “rayos cósmicos” puede enseñarnos sobre el universo, ya que fueron producidos en algún lado (que quizá podamos averiguar con su estudio), fueron acelerados por algún sistema (que quizá podamos averiguar con su estudio), pueden tener energías que no seamos capaces de producir en la Tierra y ello nos permita explorar fenómenos nuevos, y un largo etcétera. Lo interesante de este observatorio es que se espera que eventualmente brinde información sobre rayos cósmicos ultra energéticos. Resulta que se ha logrado observar la existencia de rayos cósmicos tan energéticos que no podemos aún entender cómo logaron obtener tanta energía. Dado lo que sabemos acerca de los objetos que existen en el espacio, uno espera que exista un límite de energía posible de producción y/o aceleración de los rayos cósmicos, sin embargo se ha logrado observar algunos que desafían esos límites, por lo que resulta sumamente interesante e importante obtener más información sobre ellos y determinar qué es lo que está sucediendo.

DSCF5155Otro aspecto que lo hace muy interesante para nosotros es que en este experimento existe participación mexicana. El Dr. Gustavo Medina Tanco, del Instituto de Ciencias Nucleares de la UNAM, junto con colegas y estudiantes de varias instituciones (los institutos de Geofísica e Ingeniería, y el CCADET de la UNAM, la Benemérita Universidad Autónoma de Puebla y la Universidad Michoacana de San Nicolás Hidalgo), ha participado de manera directa en la creación del EUSO-BAlloon, construido en los últimos tres años por una colaboración entre Alemania, Corea del Sur, España, Francia, Italia, Japón, México, Polonia y Estados Unidos de América, todo bajo la coordinación de la agencia espacial francesa CNES. Va una felicitación para ellos y el deseo de que sigan teniendo buenos resultados en el futuro de su colaboración.


Radiación de cuerpo negro (parte 1)

May 26, 2014

¿Cómo sabemos de qué están hechas las estrellas? Durante muchos años los seres humanos observaron el cielo con sus planetas y estrellas. Durante muchos años eso era lo único que podían ver. Sus observaciones permitieron encontrar patrones en los movimientos celestes y eso ayudó a que eventualmente entendieran el movimiento de nuestro planeta en el sistema solar. Esas observaciones ayudaron a Kepler a describir el movimiento de Marte (y de los otros planetas) con una órbita elíptica en términos de las famosas leyes de Kepler. Esas observaciones, y las leyes de Kepler, ayudaron a confirmar el poder y la utilidad de las leyes de la dinámica, así como de la teoría de la gravedad, ambas de Newton. Gracias en gran medida a esas observaciones nació la ciencia.

Aparte de los movimientos se observaban otras dos cosas en las estrellas: su brillo y su color. Es decir, se tenía una descripción de qué tan brillante con respecto a, digamos el sol, eran las estrellas que se podían ver, y luego se decía que algunas se ven rojas, otras azules, etcétera. Pero eso era todo. No se sabía nada más acerca de ellas. Ni de sus orígenes, ni sus diferencias, ni de qué eran en realidad. No siempre fue claro que el sol es una estrella, por ejemplo.

Hot_metalworkPasaron siglos y a principios del siglo XX la física estaba metida en tratar de entender algunos fenómenos que parecían contradecir las teorías existentes en esos días. Uno de esos fenómenos/problemitas consistía en describir la radiación (luz) que emiten los cuerpos calientes. Es probable que alguna vez hayas calentado (o visto a alguien hacerlo) un trozo de carbón o de metal. Seguramente habrás notado que conforme el carbón se calienta éste cambia de color (y lo mismo para el metal).

La física describe la radiación – la emisión y absorción de ondas electromagnéticas (luz) – a través de la teoría electromagnética, formulada por Maxwell en el siglo XIX. Por lo tanto los físicos de principios del siglo XX deberían de poder explicar por qué y cómo cambian los colores del carbón conforme se calienta.

Para cuantificar el fenómeno de manera precisa lo que se hace es lo siguiente: Se toma un objeto negro (negro significa que no emite – o casi no emite – radiación) con una cavidad interna y se le hace un orificio. Se cubre el orificio de tal manera que nada (radiación) puede salir. Se le coloca en un horno y se le transmite calor hasta que adquiera una temperatura determinada (hasta que esté en “equilibrio térmico”). Una vez logrado esto, se destapa el orificio y se deja que salga la radiación, la cual es recibida por un espectrómetro que identifica la intensidad de la radiación para un cierto rango de frecuencias, en otras palabras, el espectrómetro es un aparato, que ya existía en esa época, que nos dice cuanta luz (intensidad) se recibe de cada color (frecuencia). Se registran los datos en una gráfica en la que el eje horizontal corresponde a la frecuencia y el eje vertical a la cantidad de luz recibida. Esto fue el experimento. Lo recabado es lo que sucede, independientemente de si lo entendemos o no: es lo que es.

¿Qué se observa? Se obtiene que casi no hay radiación para frecuencias muy bajas. Conforme la frecuencia va incrementando, lo hace también la intensidad hasta llegar a una frecuencia particular (característica del material) en la que la intensidad llega a un máximo – el color que vemos si es visible. Posteriormente, conforme la frecuencia sigue avanzando, la intensidad comienza a disminuir rápidamente hasta llegar a cero para frecuencias muy altas. La forma precisa de la variación de la intensidad en función de la frecuencia es lo que la teoría debe de proveer.

UltravioletCatastrophe02¿Qué nos provee la teoría? Utilizando el electromagnetismo y las ideas de la época acerca de la materia (la teoría), tratamos de predecir/reproducir, según sea el caso, los resultados obtenidos por el experimento: predecimos si aún no conocemos los resultados, reproducimos si ya los conocemos. Los físicos de la época hicieron ambas cosas (experimento y cálculo). Al finalizar los cálculos matemáticos comparamos (compararon) y ¡oh sorpresa! No le damos ni cerquita. La teoría electromagnética predice que la cantidad de luz emitida debe crecer conforme crece la frecuencia ¡de manera indefinida!, ¡para siempre! – entre más frecuencia, más intensidad. De hecho, tomando los resultados matemáticos “al chile”, se llega a la conclusión de que si pudiéramos medir frecuencias infinitamente grandes, la radiación emitida sería infinita. Obviamente una tontería. El experimento muestra algo distinto, por supuesto, y la teoría queda en ridículo.

El problema, llamado catástrofe ultravioleta, era importante. Efectivamente invalidaba las ideas sobre la materia y posiblemente aspectos del electromagnetismo, que sin embargo, era una teoría que funcionaba maravillosamente para todo lo demás. Era una de las teorías más comprobadas y consistentes que se habían logrado realizar. Entonces pues, un verdadero desastre.

Planck(young)No hay mejor época para dedicarse a la ciencia que cuando hay crisis y “desastres” como los que acabamos de describir. Max Planck, físico alemán, fue quien empezó a resolver el desastre. Propuso la “cuantización” de la energía para poder explicar los resultados experimentales. Importante señalar que la solución utiliza la teoría de Maxwell ¡intacta! El electromagnetismo no era el problema, aparentemente. Se empezaba a gestar la mecánica cuántica.


¿Vocación? ¿En serio?

febrero 11, 2014

Me encuentro en el auditorio de un bachillerato de Colima. Ante mí tengo 60 estudiantes esperando que inicie la charla. La mayoría ni idea tiene de qué tratará ni de por qué está ahí. Los veo y les digo: “por favor levante la mano quien quiera estudiar una carrera universitaria.” La mayoría levanta la mano. Les vuelvo a decir “por favor levante la mano quien sepa qué va a estudiar.” Casi todos vuelven a levantar. Luego, después de observarlos unos segundos, los reto: “les apuesto lo que quieran a que sé mejor que ustedes por qué quieren estudiar eso que piensan querer estudiar.” Resultado: silencio, a veces expresiones de “sí, cómo no.” Miradas de incredulidad y algunas de indiferencia.

136Continúo: “por favor levante la mano quien conozca (en persona) a alguien que quiera dedicarse o que ya se dedique a la medicina.” Todos levantan la mano. Todos conocen al menos a un médico. Continúo: “lo mismo pero para abogado.” Todos levantan la mano. “¿A alguien que quiera estudiar o se dedique a la psicología?” Todos. “¿Pedagogía?” Todos. “¿Arquitectura?” Casi todos. “¿Ingeniería Civil?” Todos. ¿Astronomía? Ni una sola manita levantada. Luego sigo con “¿Matemáticas?” y de pronto quieren levantar la mano pero los interrumpo y les aclaro: “y no me refiero a maestro de matemáticas, sino a un matemático o una matemática.” Ninguna mano (eso si, un poco de confusión ya que si no me refiero a un maestro de matemáticas, entonces ¿a qué?). Desde luego que en cada una de las preguntas les pedí que se fijaran cuántas personas habían levantado la mano. Después del contraste tan evidente concluyo: “¡precisamente por eso es que ustedes quieren estudiar lo que dicen querer estudiar!” Caras atentas y pensativas (bueno, algunas, otras simplemente me ven como diciendo ¿y este tipo de qué habla?).

2418deabe4009eb47214305df39b2967Pocos conocemos científicos. Es muy probable que no tengamos familiares que se dediquen a la ciencia. Difícilmente alguna de nuestras vecinas se dedica a la astronomía. Podría casi apostar que no nos hemos topado en el súper con un cosmólogo y que si lo hicimos, ni lo sospechamos. No es para nada sorprendente que cuando andemos de compras veamos a algún conocido que es médico. Tampoco nos sorprenderá conocer a alguna persona nueva en el jardín del pueblo y que al empezar a platicar nos enteremos que es psicóloga. Ninguna sorpresa. Sin embargo, si por accidente un día conocemos una chica en una tienda de helados y nos dice que se dedica a la física nuclear, probablemente pensaremos que está loca y que no es cierto. O si le creemos, será una experiencia muy extraña que no pasa frecuentemente. ¿Qué es un científico? ¿A qué se dedica?

Tratando de responder aunque sea de manera superficial estas preguntas, a veces hago el siguiente ejercicio: pregunto “¿cuál es la circunferencia de un círculo?” Casi nadie sabe. A pesar de ser un conocimiento que se adquiere en primaria y que estoy hablando con chicos de prepa, casi nunca nadie lo sabe (si les pido que me den el nombre de tres escritores mexicanos vivos o muertos, o si lo extiendo a latinoamericanos, tampoco lo saben). Bien, como nadie responde a esa pregunta hago otra: “¿cuál es el área de un círculo?” Y de pronto, un número significativo de estudiantes dicen, al unísono: “pi por radio al cuadrado.” Es interesante que esa fórmula si la recuerden. En realidad no la entienden, ni saben muy bien qué significa, pero por alguna razón “suena bien.” Más allá de comprender y de asimilar el significado de dicha expresión, el “sonidito” se nos ha quedado grabado a la mayoría. Es interesante.

Sigo y pregunto que desde cuándo sabemos eso, es decir, desde cuándo los seres humanos sabemos eso. La mayoría no contesta pero no falta que alguien diga que desde hace miles de años, con los griegos. Cuando llegamos a este punto les pido que viajemos en el tiempo. Que todos juntos nos traslademos al pasado y lleguemos a Grecia. Es más, ya que hasta podemos viajar en el tiempo, decidimos llegar a nuestro destino un día tal que nadie sabía aún que el área del círculo era pi por radio al cuadrado. Ningún cerebro humano que haya existido hasta ese momento tenía ese conocimiento.

funny_this_is_what_a_scientist_looks_like_science_tshirtYa establecidos en la playa y con una fogata esperando que caiga la noche, notamos a un grupo de personas (griegos que andaban por ahí en sus “batas”) discutiendo apasionadamente. Están dibujando figuras en la arena y alegan acaloradamente. Sin violencia, pero con pasión. Los ignoramos por el momento. Cae finalmente la noche y después de tan singular viaje estamos algo cansados. Rendidos nos entregamos al sueño. Apenas amanece cuando unos gritos de emoción nos terminan de despertar. Resulta que los tipos que vimos discutir la noche anterior le habían seguido toda la madrugada y al parecer, mientras descansábamos, habían descubierto que el área del círculo era pi por radio al cuadrado. Estaban eufóricos y nos explicaban. De hecho, fueron los primeros seres humanos en tener esa información registrada en sus cerebros y ahora sería posible transmitirla. Regresamos al presente y mañana en las noticias nos dicen que hoy, mientras descansamos del viaje de regreso, alguien descubrió algo nuevo que nadie sabía. Esas personas son científicos.

¿Para qué sirve lo que estudian y descubren? ¿Para que sirve saber el área de un círculo? ¿Qué les motivó estudiarlo? ¿Tenían en mente alguna utilidad antes de descubrirlo? Los invito a que aporten sus respuestas. Ya saben dónde encontrarme.


Radiación de cuerpo negro (parte 1)

febrero 2, 2014

¿Cómo sabemos de qué están hechas las estrellas? Durante muchos años los seres humanos observaron el cielo con sus planetas y estrellas. Durante muchos años eso era lo único que podían ver. Sus observaciones permitieron encontrar patrones en los movimientos celestes y eso ayudó a que eventualmente entendieran el movimiento de nuestro planeta en el sistema solar. Esas observaciones ayudaron a Kepler a describir el movimiento de Marte (y de los otros planetas) con una órbita elíptica en términos de las famosas leyes de Kepler. Esas observaciones, y las leyes de Kepler, ayudaron a confirmar el poder y la utilidad de las leyes de la dinámica, así como de la teoría de la gravedad, ambas de Newton. Gracias en gran medida a esas observaciones nació la ciencia.

Aparte de los movimientos se observaban otras dos cosas en las estrellas: su brillo y su color. Es decir, se tenía una descripción de qué tan brillante con respecto a, digamos el sol, eran las estrellas que se podían ver, y luego se decía que algunas se ven rojas, otras azules, etcétera. Pero eso era todo. No se sabía nada más acerca de ellas. Ni de sus orígenes, ni sus diferencias, ni de qué eran en realidad. No siempre fue claro que el sol es una estrella, por ejemplo.

hot_metalPasaron siglos y a principios del siglo XX la física estaba metida en tratar de entender algunos fenómenos que parecían contradecir las teorías existentes en esos días. Uno de esos fenómenos/problemitas consistía en describir la radiación (luz) que emiten los cuerpos calientes. Es probable que alguna vez hayas calentado (o visto a alguien hacerlo) un trozo de carbón o de metal. Seguramente habrás notado que conforme el carbón se calienta éste cambia de color (y lo mismo para el metal).

La física describe la radiación – la emisión y absorción de ondas electromagnéticas (luz) – a través de la teoría electromagnética, formulada por Maxwell en el siglo XIX. Por lo tanto los físicos de principios del siglo XX deberían de poder explicar por qué y cómo cambian los colores del carbón conforme se calienta.

Para cuantificar el fenómeno de manera precisa lo que se hace es lo siguiente: Se toma un objeto negro (negro significa que no emite – o casi no emite – radiación) con una cavidad interna y se le hace un orificio. Se cubre el orificio de tal manera que nada (radiación) puede salir. Se le coloca en un horno y se le transmite calor hasta que adquiera una temperatura determinada (hasta que esté en “equilibrio térmico”). Una vez logrado esto, se destapa el orificio y se deja que salga la radiación, la cual es recibida por un espectrómetro que identifica la intensidad de la radiación para un cierto rango de frecuencias, en otras palabras, el espectrómetro es un aparato, que ya existía en esa época, que nos dice cuanta luz (intensidad) se recibe de cada color (frecuencia). Se registran los datos en una gráfica en la que el eje horizontal corresponde a la frecuencia y el eje vertical a la cantidad de luz recibida. Esto fue el experimento. Lo recabado es lo que sucede, independientemente de si lo entendemos o no: es lo que es.

Gráfico_de_un_cuerpo_negro¿Qué se observa? Se obtiene que casi no hay radiación para frecuencias muy bajas. Conforme la frecuencia va incrementando, lo hace también la intensidad hasta llegar a una frecuencia particular (característica del material) en la que la intensidad llega a un máximo – el color que vemos si es visible. Posteriormente, conforme la frecuencia sigue avanzando, la intensidad comienza a disminuir rápidamente hasta llegar a cero para frecuencias muy altas. La forma precisa de la variación de la intensidad en función de la frecuencia es lo que la teoría debe de proveer.

¿Qué nos provee la teoría? Utilizando el electromagnetismo y las ideas de la época acerca de la materia (la teoría), tratamos de predecir/reproducir, según sea el caso, los resultados obtenidos por el experimento: predecimos si aún no conocemos los resultados, reproducimos si ya los conocemos. Los físicos de la época hicieron ambas cosas (experimento y cálculo). Al finalizar los cálculos matemáticos comparamos (compararon) y ¡oh sorpresa! No le damos ni cerquita. La teoría electromagnética predice que la cantidad de luz emitida debe crecer conforme crece la frecuencia ¡de manera indefinida!, ¡para siempre! – entre más frecuencia, más intensidad. De hecho, tomando los resultados matemáticos “al chile”, se llega a la conclusión de que si pudiéramos medir frecuencias infinitamente grandes, la radiación emitida sería infinita. Obviamente una tontería. El experimento muestra algo distinto, por supuesto, y la teoría queda en ridículo.

El problema, llamado catástrofe ultravioleta, era importante. Efectivamente invalidaba las ideas sobre la materia y posiblemente aspectos del electromagnetismo, que sin embargo, era una teoría que funcionaba maravillosamente para todo lo demás. Era una de las teorías más comprobadas y consistentes que se habían logrado realizar. Entonces pues, un verdadero desastre.

planckNo hay mejor época para dedicarse a la ciencia que cuando hay crisis y “desastres” como los que acabamos de describir. Max Planck, físico alemán, fue quien empezó a resolver el desastre. Propuso la “cuantización” de la energía para poder explicar los resultados experimentales. Importante señalar que la solución utiliza la teoría de Maxwell ¡intacta! El electromagnetismo no era el problema, aparentemente. Se empezaba a gestar la mecánica cuántica.


¿Relatividad?

enero 28, 2014

einstein-1894_approx-young-sizedSi avanzo 50 metros durante 10 segundos en dirección Oeste, decimos que llevo una “velocidad” de “5 metros por segundo.” En realidad deberíamos decir “5 metros entre segundo,” pero como que se acomoda mejor la lengua al decir “por.” Es más, para ser verdaderamente cuidadosos y precisos tendríamos que decir “5 metros entre segundo en dirección Oeste con respecto al árbol que se encuentra enfrente de mi casa,” en otras palabras, para hablar de “velocidad” se requiere lo siguiente: unidades –  en qué se mide la velocidad, que en nuestro ejemplo son “metros entre segundo” (podrían ser kilómetros entre hora, pulgadas entre minuto, etc.). Se requiere también especificar la dirección en la que se mueve y esto conlleva a tener que especificar un “sistema de referencia,” en nuestro caso el árbol enfrente de mi casa.

Claro que cuando no es importante ser tan precisos, solamente decimos – ayer regresé por carretera y venía como a 140 – todos entenderemos que se refiere a kilómetros entre hora (y diremos kilómetros por hora) y que la dirección era hacia nosotros, es decir hacia Colima. Para no hacernos bolas ni aburrirnos, utilizaremos esa descripción menos precisa en lo que resta de este escrito.

Si voy en un coche a 50 km/hr y me dirijo derechito al árbol que se encuentra plantado enfrente de mi casa, y no freno, seguramente tendré algunos problemas. Ignoremos las obvias consecuencias de dicho encontronazo y pensemos en lo siguiente: desde la perspectiva de un pasajero de nuestro coche, el árbol se acerca a 50 km/hr, en otras palabras es posible verlo de esa manera. Si le pregunto a un insecto parado en árbol, el insecto también puede decir que el coche va a 50 hacia él o que el árbol (junto con él) va a 50 hacia el coche. Es equivalente.

Un choque más emocionante: si en lugar de que nuestro coche vaya en una trayectoria hacia un árbol va hacia otro coche, que a su se mueve en la misma dirección, entonces la cosa es más emocionante (y peligrosa). Supongamos por ejemplo que con respecto a la banqueta nuestro coche va a 50 km/hr hacia la derecha y que el coche de nuestros desafortunados amigos va a 50 km/hr pero rumbo a la izquierda. Repitiendo el ejercicio de arriba, si deseamos podemos decir que el coche enemigo viene hacia nosotros a 100 km/hr y viceversa. La velocidad es precisamente relativa y depende del sistema o marco de referencia con respecto al cual se mida. Así, si yo mido la velocidad del coche enemigo con respecto al volante de mi coche, aquel se acerca hacia mi volante con una velocidad de 100 km/hr. Si la medimos con respecto a la banqueta, uno lleva 50 a la derecha y el otro 50 a la izquierda. Creo que la mayoría de nosotros estaremos de acuerdo con lo que acabo de decir, y es además es efectivamente correcto, bueno, a medias.

Resulta que hace un poco más de 100 años Albert Einstein llegó a la conclusión de que lo que acabamos de describir es verdad, o casi verdad, solo cuando las velocidades involucradas son pequeñas con respecto a la velocidad de la luz, la cual es de aproximadamente 300,000 km/seg. Una vez que las velocidades sean comparables a la de la luz, encontraremos fenómenos físicos muy diferentes a lo que nuestra intuición y experiencia nos dice. Claro está que en nuestra vida cotidiana esos efectos no son apreciables ya que nos movemos con velocidades extremadamente pequeñas (comparadas con la de la luz), sin embargo existen muchos fenómenos naturales, incluyendo algunos que nosotros generamos, en los que si se manifiestan los cambios.

Para describir un poco de qué se trata consideremos lo siguiente. Como vimos arriba, la velocidad está relacionada con un desplazamiento espacial (avanzar una cierta distancia) realizado durante un cierto intervalo de tiempo. Si voy a 10 m/s quiere decir que me desplacé de un lugar a otro, separado por 10 metros, y que lo hice durante un segundo. Si efectivamente confirmo ese enunciado quiere decir que pude medir (o alguien lo hizo por mi) una distancia (10 metros) y un intervalo temporal (un segundo). Pues bien, lo que Einstein descubrió es que la velocidad de la luz es siempre la misma y es independiente del estado de movimiento de quien la observe. ¿Qué quiere decir esto? Quiere decir que si yo enciendo una luz en cierta dirección, un observador registrará que la luz llega a 300,000 km/seg independientemente de si yo me muevo o no. No importa si yo voy en un coche que viaje a la mitad de la velocidad de la luz y luego le “aviente” la luz de una linterna, el observador no verá la luz a 450,000 km/seg, la verá exactamente a 300,000 km/seg. De hecho, si en el ejemplo de arriba los coches fueran a 200,000 km/seg (comparable a la de la luz) en lugar de 50 km/hr, no determinarían 400,000, sino algo menor a 300,000.

tdgraphformula1¿Cómo es posible? ¿Qué sucede que haga esto posible? La consecuencia de la constancia de la velocidad de la luz es que cuando viajamos a velocidades tan grandes, el espacio y el tiempo se distorsionan de tal forma que la luz, independientemente de cómo nos movamos, mantiene su velocidad. A esto se le conoce como la relatividad especial que descubrió Albert Einstein, y al contrario de lo que comúnmente se le atribuye (de que todo es relativo y no podemos determinar nada), la relatividad especial está fundamentada en dos postulados bastante no-relativos: i) Las leyes de la naturaleza son iguales en todos lados y ii) la velocidad de la luz es constante e independiente del sistema de referencia.