Estrellas

sirius_La vida y todo lo que hay en este planeta es consecuencia de las estrellas. No solo en este planeta, pero como nos gusta sentir que somos privilegiados y que representamos – por alguna razón – lo más importante de la naturaleza, pues digámoslo así.  Cuando digo consecuencia me refiero a que sin las estrellas no existirían los materiales para formar los planetas, ni la energía necesaria para que hubiera vida en el nuestro. Aquí digo nuestro porque no hemos encontrado vida en ningún otro, aunque en caso de existir, sería la energía de alguna o algunas estrellas la que le hubiera permitido hacerlo.

¿Qué es una estrella? Una estrella es un constante “jaloneo” entre átomos de hidrógeno. Bueno, principalmente de hidrógeno, ya que con el tiempo las estrellas van produciendo otros elementos. En el “jaloneo” participan las cuatro fuerzas de la naturaleza que conocemos: gravitacional, electromagnética, nuclear fuerte y nuclear débil. Ese “jaloneo” produce elementos químicos diferentes al hidrógeno y una cantidad inmensa de energía, parte de la cual recibimos como luz.

Veamos cómo está la cosa: El material más abundante en el universo, que no necesita de una estrella para existir, es el hidrógeno. Sus átomos son los más sencillos posibles: un protón y un electrón. El hidrógeno no está distribuido de manera uniforme en el universo y existen regiones con mucho y regiones con casi nada. En las regiones ricas en hidrógeno se forman “nubes” que poco a poco, gracias a la atracción gravitacional, se concentran en volúmenes cada vez más pequeños. Llega un momento en que son tan pequeñas que la repulsión entre los protones de los átomos ejercen una presión hacia afuera: la gravedad quiere hacer la nube más pequeña, pero la repulsión electromagnética se siente incómoda y quiere agrandarla. En ese estira y afloja ¡ganará quien pueda “jalar” más! Así muchas nubecitas se quedan nubecitas y otras tantas, que tienen una cantidad crítica de gas (masa), permiten a la gravedad ganar y la nube se sigue contrayendo. Notemos que en este proceso los átomos son sujetos de estiradas y jaladas en varias direcciones y por lo tanto están realizando movimientos rápidos y azarosos. El resultado de todo esto es que la temperatura de la nube, que no es otra cosa que el movimiento de los átomos, va aumentando conforme ésta se contrae.

Vencida la interacción electromagnética, los átomos se concentran cada vez más haciendo que sus protones se acerquen más y más aunque no quieran: la repulsión sigue estando ahí y pone resistencia, pero la gravedad de toda la nube gana y los sigue acercando. Eso sucede hasta que se logra llegar a un tamaño en el que las fuerzas nucleares “se despiertan”. Una vez que los protones casi se “tocan”, y la temperatura llega por ahí de los diez millones de grados centígrados, las fuerzas nucleares (débil y fuerte) empiezan a actuar: los protones en los núcleos de los átomos de hidrógeno (cuatro de ellos) se “fusionan” creando átomos de Helio y liberando en el proceso grandes cantidades de energía en forma de fotones, positrones y neutrinos. Los fotones liberados en ese proceso son reabsorbidos y rebotados por el gas de las capas exteriores durante cientos de miles (a veces millones) de años antes de “salir” de la estrella, para luego llegar a una de las fotoceldas solares que hemos construido, generando electricidad y así permitiéndonos presumir que usamos energía solar, que como vimos no es otra cosa que energía nuclear.

Tamaños-estrellasUna vez que se generan las reacciones nucleares tenemos una estrella. Las reacciones nucleares “detienen” el colapso gravitacional y el “estira y afloja” se compensa quedando una estrellita redondita que como dicen los cuentos y/o películas chafas: vivió feliz para siempre. Bueno, más o menos. En realidad no. El desenlace final de la pelea depende enormemente del tamaño inicial de la nube colapsada. Existen periodos en donde superficialmente pareciera que están en tregua y la estrellita brilla muy bonita y con un tamaño más o menos constante, pero eventualmente, conforme pierde cada vez más energía, la gravedad volverá a ganar y se colapsará un poco más, luego las fuerzas nucleares agarrarán un “segundo aire”, rebotará y volverá a encenderse creando elementos más pesados. Las fases y veces que esto puede ocurrir dependen crucialmente de la masa inicial de la estrella: la muerte de la estrella está dictaminada prácticamente desde el inicio. “Nuestro” Sol, por ejemplo, colapsará y tendrá un rebote que lo hará extenderse más allá de la órbita de Marte (y por supuesto ello hará que los planetas interiores, incluida “nuestra” preciosa Tierra, terminen pulverizados) para luego volver a contraerse finalmente en un objeto medianamente caliente, del tamaño aproximado de Júpiter y sin fusión nuclear. Otras estrellas son más presumidas y mueren en una tremenda explosión en la que generan una cantidad importante de elementos químicos pesados. Son estas muertes, llamadas supernovas, las que producen materiales que luego son utilizados para hacer los teclados de las computadoras en donde se escriben artículos sobre la muerte de las estrellas, entre otras cosas. Otra muerte estelar es la de convertirse en agujeros negros, pero eso ocurre solo para las estrellas obesas.

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

A %d blogueros les gusta esto: