¿Cultura científica?

agosto 13, 2013

2003_cuatroEn nuestro país casi no se lee y ello explica muchas cosas. Tristemente lo poco que se lee no es demasiado variado y está dominado por basura (intenté decirlo de otra manera, pero no encontré una mejor). Algo también inquietante es que el pequeño porcentaje de personas asiduas a la lectura de calidad tienden en muchas ocasiones a limitar demasiado su rango de temas e intereses. Trataré de explicar mejor lo que quiero transmitir de la siguiente manera: a mí me gusta leer, lo necesito. Por alguna razón que no pretendo explicar en este momento, tengo la enorme fortuna de contar con muchos amigos (lectores también) que se desenvuelven en áreas distintas a la mía, en particular en las humanidades (músicos, escritores y poetas principalmente) y las ciencias sociales (sociólogos y antropólogos principalmente). Todos ellos se caracterizan por ser asiduos lectores, al igual que yo. Bien, ahora al punto inicial: cuando alguno de ellos me ha visitado en mi oficina o en mi casa y ven mis libros, siempre, invariablemente, hacen el mismo comentario: “fefo, ¡te felicito!” les pregunto que por qué y me responden “es que tienes libros que no son de ciencia. Te felicito porque entonces no solo lees sobre cosas científicas (léase física)”. Esta explicación de la felicitación es luego seguida de mi agradecimiento: “gracias, pero supongo entonces que si ahora vamos a tu casa o a tu oficina de seguro encontraremos libros (leídos) de ciencia en tus libreros, ¿verdad?”

Ejemplos de libritos basura (populares)

Ejemplos de libritos basura (populares)

Es interesante que a pesar de vivir en una época definida por el conocimiento científico, adquirido durante los últimos cuatrocientos años, no tengamos un mínimo conocimiento sobre ciencia, incluidas las personas que leen y que a veces podríamos catalogar de cultas. Conozco varias personas famosas en los círculos intelectuales que no tienen el dominio científico que se podría esperar de una persona con educación media superior. No saben por ejemplo distinguir si un tema o comentario sobre extraterrestres o sobre calentamiento global es serio o charlatanería.

Es también muy interesante y sobre todo sintomático que por lo general, en países en vías de desarrollo, la ciencia y la cultura se vean como entes separados. Si organizamos un evento cultural no nos sorprenderá en lo más mínimo que nos muestren un bailable o un concierto musical. Una conferencia sobre apreciación del arte y una sobre cómo, a través de las manualidades artísticas, podemos transformar nuestro hogar en un reconfortante y estético ambiente. La muestra de cine y la de escultura, o la lectura de poemas quedarán perfectas en el evento, sobre todo si se involucra a los niños. Si tenemos suerte hasta nos tocará participar en un pequeño número de música ancestral o un taller de manualidades en el que podamos “meter las manos”. Lo que sí nos sorprenderá y no esperamos encontrar es que de repente, en ese mismo ambiente, se nos presente una charla sobre la vida de las ballenas o sobre cómo se produce el oxígeno que respiramos. Eso no. Eso es muy frío y aburrido como para ser cultura.

Es triste. Percibimos la ciencia y el conocimiento como cosas rígidas y asociadas, casi siempre, a materias reprobadas o nada placenteras. Y ahí nos quedamos. O peor, percibimos a la ciencia como una serie de instrucciones inamovibles que solo tratan de limitar nuestra creatividad y nos quiere decir lo que está bien. Los científicos creen que lo saben todo y solo nos quieren decir lo que se puede o no se puede hacer. ¡Son horribles! ¡Ni que lo supieran todo!

lecturaLa mayoría no nos damos cuenta de que vivimos inmersos en (y prácticamente gracias a) los conocimientos que hemos generado, durante muchos años, a través de un proceso que en verdad es extremadamente creativo y apasionado. Como todo, para llevarlo a cabo de manera exitosa, requiere de mucho trabajo y dedicación, pero lo que quizás muy pocas personas asocian con la ciencia, y que es una parte fundamental de ella, es el nivel de pasión que ésta otorga y exige de sus practicantes. Por otro lado, también está el hecho de que comprender un poco sobre la naturaleza y entender algunas de las bases en que se sustenta nuestra vida actualmente, sin necesariamente dedicarse a la ciencia, puede ser placentero. Esto también, estoy casi seguro, no es algo que comúnmente se asocie con la ciencia. No sentimos que leer algo sobre ciencia nos pueda dar felicidad o nos pueda mantener entretenidos.

CIENCIAparaTODOSOtra cosa común acerca de la ciencia es la idea de que al ser tan especializada y “difícil”, solo sirve para aplicarse a cosas muy sofisticadas y casi siempre muy alejadas de la realidad. Nada podría estar más equivocado. Otra virtud del leer y enterarse de los conocimientos científicos, sobre todo acerca de los procesos que los producen, es que nos puede dar una idea de cómo utilizarlos para tomar decisiones razonadas. La manera en que se hace la ciencia es algo que podemos utilizar en ámbitos que no necesariamente sean científicos y nos puede ayudar a tomar buenas decisiones. Esta faceta es por supuesto pragmática, pero es también interesante.

La ciencia pues es cosa de locos y por eso los invito a que intenten incluir temas científicos en sus lecturas, estoy seguro que lo van a disfrutar.


Simetrías

agosto 6, 2013

Imagina que tenemos un cuadrado dibujado en un trozo de papel. Si cerramos los ojos y alguien rota el cuadrado 90 grados, al abrirlos y mirarlo no notaremos ninguna diferencia. Claro que si lo giran 45 grados podremos percatarnos de que alguien lo movió. No es muy difícil ver que si el cuadrado es rotado por 90, 180, 270 o 360 grados (360 grados corresponde a una vuelta completa), el efecto será precisamente que no haya efecto. Una rotación por cualquier otro ángulo y será evidente que movieron el cuadrado. Esos cuatro ángulos especiales están relacionados con lo que llamamos una simetría (bauticémosla como la simetría del cuadrado).

simetria_en_la_naturaleza (4)Consideremos ahora un triángulo equilátero: si lo rotamos 120, 240 o 360 grados no cambia. Cualquier otro ángulo y se notará el movimiento. ¿Y un pentágono? 72, 144, 216, 288 o 360 grados. ¿Y un hexágono? 60, 120, 180, 240, 300 o 360 grados, ¿y un ….. círculo? Un círculo puede ser rotado por cualquier ángulo y no notaremos ningún cambio, es decir, existe un número infinito de ángulos (entre 0 y 360 grados) que podemos utilizar para rotar un círculo y éste se verá igualito. Se puede decir que el círculo es una figura extremadamente simétrica.

Podemos ser un poco más ambiciosos y en lugar de pensar en un cuadrado pensar mejor en un cubo, es decir, ir de dos dimensiones a tres. Ahora la simetría será más compleja y rica ya que podemos rotar en varias direcciones. De la misma manera podemos pensar entonces en tetraedros, icosaedros, dodecaedros, …., ¡esferas! Siguiendo con el argumento anterior, vemos que la esfera es “ultra extremadamente simétrica”: si tuviésemos enfrente nuestro a una esfera perfecta (y lisa, es decir, de un color uniforme), sería imposible decir si se encuentra rotando o no. Podría estar rotando sobre un eje, cualquiera, y no podríamos percatarlo (otra vez, solo si la esfera es perfecta y de un color uniforme). Existe un número infinito de ejes de rotación asociados a la simetría de la esfera.

Si ahora queremos de plano perdernos en el mundo de la abstracción (algo por cierto maravilloso y muy humano), podríamos imaginarnos objetos no en tres sino en cuatro, cinco, seis o más dimensiones. A las esferas en dimensiones mayores a tres les llamamos de manera general hiperesferas.

Bueno, claro que podemos hacer y pensar sobre estas cosas, pero ¿y?

Pues nada, que es interesante y que durante años algunas personas han dedicado su vida a tratar de estudiar todos estos objetos matemáticos intentando encontrar sus propiedades y viendo la posibilidad de inventar objetos cada vez más interesantes y analizar sus posibles simetrías. ¿Por qué? Quizá por la misma razón por la que otros seres humanos han, durante muchos años, escrito poesía. También quizá por la misma razón por la que muchos más seres humanos, durante el mismo tiempo, no han hecho nada más que subsistir. Quizá, no lo sé.

Y sin embargo resulta que muchas de las propiedades y de la estructura que se ha generado para describir estas figuras y sus relaciones matemáticas, entre ellas sus propiedades de simetría, están íntimamente relacionadas con la naturaleza. Desde el aspecto geométrico de prácticamente cualquier objeto en el universo, hasta cosas tan profundas y fundamentales como las interacciones que determinan la forma en que el universo está formado. Por ejemplo sabemos que existen cuatro interacciones fundamentales en el universo: gravitacional, electromagnética, nuclear fuerte y nuclear débil. Las tres últimas (y muy posiblemente la primera) son manifestaciones de un cierto tipo de simetría presente en la naturaleza. La materia se forma e interacciona entre sí de la manera que lo hace debido a la presencia de esa simetría en la naturaleza. Bueno, en realidad para ser más preciso, lo hace debido a la presencia de una cuasi-simetría de la naturaleza.

Algo verdaderamente sorprendente es que en la naturaleza casi todo “parece” simétrico. Si no nos fijamos en detalle, casi todo tiene algún tipo de simetría: las flores, la luna, el cuerpo humano, etc. Pero si nos fijamos un poquito con más cuidado, pues resulta que no. Resulta que no existe una flor completamente simétrica. La luna no es exactamente esférica – tiene protuberancias, cráteres. Nuestro cuerpo no solo no es simétrico en nuestro interior, sino que en realidad nuestro ojo derecho es un poco distinto del izquierdo. Los dedos de nuestra mano derecha se parecen pero no son idénticos a los de la izquierda. Y así todo lo que observemos. Pareciera que a la naturaleza le gusta la simetría pero “con poquita sal”, como para que sepa un poco mejor, para darle variedad a las cosas: demasiada simetría agobia.

Es como decir que a la naturaleza le gustaría saber si la esfera de nuestro ejemplo anterior está rotando o no. Para hacerlo la naturaleza “rompe” la simetría. Le pone una manchita a la esfera y así podremos saber si está rotando y en qué dirección, excepto en un caso: si el eje de rotación pasa por la manchita, en realidad no podremos saber si está rotando o si está quieta. A veces a la naturaleza le gusta jugar y hacerse la interesante, y eso es bueno porque nos mantiene con trabajo, si no ¿de qué viviríamos?


Chismosos

julio 17, 2013

Prácticamente todos los científicos damos clases. Dependiendo del sistema de organización universitaria de nuestros países, damos clases a estudiantes que se están formando para ser científicos, como en México, o damos clases a todos los estudiantes independientemente de la carrera que hayan elegido, como en Estados Unidos, donde por ejemplo alguien que se encuentra cursando la carrera de ingeniería civil o de biología, y tiene que tomar cursos de química y matemáticas, recibe esos cursos por parte de investigadores de esas áreas. Así pues los científicos no somos maestros pero una parte importante de nuestro tiempo y nuestra contribución a la sociedad es precisamente dar clases. A la mayoría nos gusta.

Una de las características básicas de las personas que nos dedicamos a la ciencia es que somos extremadamente chismosas. Nos produce mucho placer el andar hablando de lo que hacemos y lo que estamos pensando. No podemos obtener un resultado en nuestro trabajo porque inmediatamente queremos darlo a conocer y compartirlo (presumirlo) a todos los demás colegas. Es más, si se puede, también compartirlo (otra vez, presumirlo) con un público más general. La manera oficial de hacerlo es a través de las publicaciones científicas y por lo tanto los científicos que se encuentran activos publican en revistas científicas sus hallazgos y contribuciones. Existen revistas científicas de varios niveles de calidad, como en todo, y por lo general intentamos publicar en las revistas más reconocidas.

Solvay_conferencePublicar entonces es una manera de presumir a nuestros colegas lo que hemos logrado. Otra manera muy común e importante de difundir nuestros resultados y también de enterarnos de lo que otras personas están realizando es a través de los congresos científicos. Un congreso científico es un evento en el que participa un grupo de científicos y en el que cada uno de ellos expone, ante una audiencia por lo general muy crítica, su trabajo y sus logros. Aunque se da, es poco común que alguien asista a un congreso solo para escuchar. Más bien la idea es, además de escuchar y criticar (la crítica es uno de los pilares de la actividad científica) el trabajo de lo demás, exponer las ideas propias para que sean analizadas y criticadas por la comunidad científica. Solo así se crece.

Otro aspecto de las congresos es que se interacciona con personas de todo el mundo y se conocen posibles colaboradores futuros. En los ratos en que no hay charlas por lo general se platica de proyectos, ideas, errores y posibles colaboraciones. A la hora del café, a la hora de la comida, a la hora de la cena, prácticamente todo el tiempo se mantiene uno hablando de los temas de su área y escuchando que hacen los demás. Puro presumir pues, aunque con cuidado: el ambiente, sobre todo si el congreso es de buen nivel, es bastante crítico y no se perdona fácilmente. Así que para andar de chismoso, ya sea presumiendo o criticando, más vale tener argumentos sólidos y fundamentados, ya que de lo contrario se puede salir de ahí algo “lastimado”.

CONFERENCIA SOLVAY 1827Hay congresos alrededor del mundo prácticamente todo el año, sin embargo hay dos periodos que sobresalen por la cantidad y el nivel. El primero y más importante es el verano: ya que la mayoría de los científicos trabajan en universidades alrededor del mundo y, como mencioné al inicio, participan impartiendo cursos, les es más fácil alejarse de sus instituciones en el verano cuando precisamente no hay clases. Los congresos más famosos y concurridos ocurren casi siempre entre junio y septiembre. Otro periodo importante, sobre todo para congresos organizadas en latitudes bajas, es diciembre – febrero. Por una parte es también época en que algunas instituciones no tienen clases, pero por otro lado es una época en que los científicos de las latitudes norteñas (latitudes precisamente donde se encuentra la gran mayoría de científicos en el mundo) ven con mucho agrado el escapar de los fríos intensos y pasar unos días en los amigables climas cálidos del “sur”. Eso sí, aun cuando uno tiene la oportunidad de conocer otros lugares (hermosos, como casi cualquier lugar de nuestro planeta) y puede uno relajarse, por lo general, si se es serio, los congresos representan una cantidad impresionante de trabajo. Hay congresos en los que uno termina completamente exhausto. Desde luego que habrá quienes aprovechen la oportunidad solo para descansar y pasar un rato agradable, pero al menos en el ámbito científico serio, representan una pequeña minoría.

SUSY2011-1024x682Luego hay otro tipo de actividad que combina la presumida y la enseñada, se les conoce como escuelas. Una escuela es un evento que puede durar desde una semana a un par de meses en el que un grupo de científicos invitados prepara cursos especializados que luego presentan a estudiantes. Los estudiantes son de varias partes del país (en el caso de una escuela nacional) o del mundo y pueden ser de nivel licenciatura o posgrado, a veces mixta. Esos eventos son muy bonitos y en lo personal de mis favoritos. Y ya que estamos de presumidos les cuento que este año tendré la oportunidad de dar un curso sobre el Higgs en una escuela nacional dirigida a estudiantes de licenciatura que se celebrará en Sonora. El próximo año estamos viendo la posibilidad de traer una escuela de verano (grande y famosa) a Colima. Ya les contaré en qué queda eso.


SUSY

junio 17, 2013

susy-nonosHace unos meses recibí un mensaje de un colega comentando que una agencia de noticias lo había entrevistado acerca del LHC (el gran colisionador de hadrones ubicado en Francia-Suiza). En particular les interesaba saber “qué era eso de la supersimetría” (a quien llamaremos SUSY). Al parecer se enteraron de que el LHC andaba buscando a SUSY y le pedían de favor que si les explicaba qué o quién era esa tal SUSY, pero de tal manera que niñ@s pudieran entenderlo. Mi colega me dijo que lo habían agarrado en curva y que cualquier ayuda sería agradecida.

Antes de mostrarles mi exquisita y contundente respuesta – para niñ@s – me gustaría comentar lo siguiente. Cuando se desea compartir con un público general temas relacionados a la investigación científica y el conocimiento que ésta genera, es necesario intentar utilizar un lenguaje que minimice la cantidad de tecnicismos y que sea familiar a un amplio sector. Por supuesto que ello implica que lo único que se puede hacer es describir superficialmente algunos de los temas y que, con suerte, uno logre interesar a su público para que ell@s busquen más información. No es posible describir un conocimiento de tal manera que cualquier persona lo pueda entender en detalle solamente leyendo una descripción en una entrevista o en un documento que carezca de tecnicismos – para entender a detalle cualquier cosa es necesario dedicar mucho tiempo y estudio.

Creo que a veces se cae en el error de pensar que l@s lector@s no tienen la capacidad de interesarse y/o investigar más a fondo si algunos de los temas les llamaron la atención. Se asume que el lector es flojo, desinteresado, incapaz y que de algún modo se le tiene que dar toda la información de manera digerida y “sin complicaciones” para que le sea útil. No estoy de acuerdo.

einstein010Por otro lado es común escuchar en diversos foros (cantinas pues) cosas como: “ya lo dijo Einstein, si no puedes explicar algo para que lo entienda tu abuela, entonces no lo sabes” – por cierto que citar a Einstein y algún que otro científico famoso es casi un deporte y a veces hasta divertido, lo malo es que la mayoría de las personas que los citan en ese contexto nunca se han preocupado de ver si efectivamente las citas son verídicas, y menos, ni de por mera curiosidad, intentar leer algo de lo que esos científicos publicaron y no necesariamente dijeron en alguna fiesta o evento social. Entonces, nada más para dejar clara mi postura: Lo haya dicho o no Einstein, esa frase carece de significado. ¿A qué me refiero? A que, por ejemplo (y ésto lo incluí en la respuesta a mi cuate), si alguien nos pide explicar a niñ@s en detalle qué es la reforma laboral, no cabe duda de que la mayoría de nosotros pensaremos que nos piden algo ridículo. Podremos decir algo de manera general y didáctica, seguro, pero explicarlo en detalle no será posible, aunque sepamos qué es y la entendamos a profundidad. Bueno, pues lo mismo sucede con el conocimiento científico, conocimiento que por cierto se ha generado a través de un proceso largo, complejo y cada vez más sofisticado.

SuzyEntonces no, no se puede explicar en detalle qué es SUSY a niñ@s. Es más, tampoco se puede explicar en detalle a personas adultas. Se puede entender qué es SUSY en detalle, pero se requiere estudiar a fondo muchos conceptos previos y luego específicamente SUSY. Obviamente no todas las personas estarán interesadas ni tendrán el tiempo de dedicarse a ello, pero si habrá quien esté interesad@ en conocer un poco sobre ese tema.

Lo que podemos hacer es intentar dar una idea general, algo que pueda ayudarnos a comprender por qué hay personas que dedican su vida a buscarla o algo que de repente haga que una de nuestras lectoras se interese en investigar más a fondo, tanto que decida dedicarse a ello y que después de unos años contribuya directamente a su descubrimiento o a la idea que reemplazará a SUSY. Se vale soñar.

Entonces ¿qué fue lo que le contribuí a mi cuate? – que por cierto no lo utilizó disque porque ¡ya se le había ocurrido a él una contestación! – Aquí va:

«Querer explicarle a niñ@s qué es la supersimetría es como querer explicarles qué es la reforma laboral. Son cuestiones técnicas que requieren de muchos conocimientos y conceptos previos y que no se pueden explicar detalladamente a niñ@s, no tiene sentido. Dicho ésto, entonces, lo que sí se puede hacer es darle una idea, simbólica, superficial y por lo tanto caricaturesca de lo que es la supersimetría. A l@s niñ@s les diría: En la naturaleza existen muchas cosas: agua, árboles, perros, estrellas, mocos, etc. A todo eso l@s físic@s le llamamos materia. En los últimos años (¡como 100!) hemos descubierto que toda la materia está compuesta de unos ingredientes básicos: las partículas (así les llamamos). Además hemos descubierto que existen dos tipos MUY distintos de partículas: unas que son las que forman la materia (como mencioné antes) y otras que le dicen a la materia cómo formarse y comportarse. A las primeras les llamamos fermiones y a las segundas les decimos bosones (en honor a unos tipos que las estudiaron). Estos dos tipos de partículas, repito, son COMPLETAMENTE diferentes. Se ven diferentes, se sienten diferentes, se agrupan de manera diferente. A primera vista las unas no tienen nada que ver con las otras.

susy1La supersimetría es la idea de que, en el fondo, las dos SÍ están relacionadas y se quieren, pero eso sí, muy en el fondo.»


¿Dimensiones extras?

mayo 27, 2013

El resultado científico más impactante y trascendente del año pasado fue el descubrimiento del Higgs. Como platicamos hace algunas semanas el Higgs finalmente cayó en las redes y ahora sabemos que si existe. Se buscó durante alrededor de 40 años y para encontrarlo se tuvieron que diseñar y construir aceleradores, colisionadores y detectores de partículas. Esos laboratorios y equipos, sin embargo, no fueron construidos solo para buscar al Higgs, sino que fueron construidos para tratar de descubrir más cosas acerca de la naturaleza.

La búsqueda de conocimiento y el intento de entendimiento de la naturaleza (es decir, de todo) representan unas de las características intrínsecas del ser humano. Buscar y explorar es parte de la misma naturaleza, quien a través de nosotros, es decir, a través de sí misma, se auto-explora e investiga. Y luego resulta también que desde que hacemos ciencia nos hemos dado cuenta de que esas búsquedas casi siempre resultan en ideas y conocimientos que luego pueden ser aplicados en otras áreas y en particular en cuestiones de absoluta practicidad. Ejemplos concretos de ello, relacionados precisamente con los aceleradores, colisionadores y detectores son: el internet – inventado en el CERN – el tratamiento de cáncer con aceleradores de hadrones, el desarrollo de técnicas de imagen en 3D para explorar el cuerpo humano, y un largo etcétera.

accelerator2Una de las cosas interesantes de la forma en que ésto funciona es que, al contrario de lo que podríamos imaginar, las fases iniciales de desarrollo y planeación de este tipo de proyectos de investigación no contemplan la resolución de los problemas prácticos que eventualmente terminan resolviendo. Es decir, cuando se planeaba la construcción del LHC, por ejemplo, no se pensaba en cómo diseñarlo para que pudiera resolver el problema de matar tumores cancerígenos en el interior del cerebro humano. Resulta que la tecnología desarrollada para llevar a cabo el programa de exploración científica del LHC puede ser utilizada y aplicada a otras cosas que conforme avanza el tiempo van surgiendo: ¡es en realidad maravilloso! Y bueno, si no era eso lo que se buscaba, entonces ¿qué se buscaba? ¿A poco lo construyeron solo para buscar el Higgs?

No. El Higgs fue uno de los muchos motivos. Buscamos y esperamos muchas otras cosas que den pistas sobre aspectos muy profundos de la naturaleza. El Higgs ha permitido verificar que la idea que teníamos sobre cómo se genera la masa es correcta, sin embargo quedan aún muchas preguntas y misterios sin resolver sobre ese problema. Por ejemplo, sabemos que existen 12 partículas que conforman la materia que nos conforma a nosotros y todo lo visible en el universo. Una de ellas, quizás la más familiar es el electrón. Otra de ellas, de las últimas en ser descubiertas (1994) es una partícula con el nombre poco amigable de quark top. Al descubrir el Higgs hemos entendido cómo es que las partículas adquieren su masa – por ejemplo estas dos partículas – sin embargo la masa del electrón es una millonésima del tamaño de la masa del top y no tenemos ni idea del porqué (bueno, si tenemos ideas, pero aún no sabemos).

escherOtro problema muy interesante es el de la materia oscura: Existe materia en el universo que no interacciona con la luz y que por lo tanto no la podemos ver. La enorme capacidad lírica de los físicos hace que entonces le llamemos materia oscura. Esta materia interacciona gravitacionalmente y es probable, aunque todavía no sabemos, que interaccione también a través de la llamada fuerza nuclear débil. No sabemos de qué está hecha. Sabemos que no está hecha de las 12 partículas conocidas, pero eso es todo. ¿Ideas? Un montón, pero aún no sabemos cuál – si es que alguna – es la correcta. Otro problema cotorrón: el Big Bang es la teoría que nos describe el origen y evolución del universo. Uno de los descubrimientos más impactantes hecho por los seres humanos es que el universo se está expandiendo: cada vez es más grande – o si prefieren – cada vez fue más pequeño. Hubo un momento en que era tan pequeño que la densidad de energía (cantidad de energía contenida por unidad de volumen) y la temperatura eran inmensamente altas, con valores que nunca hemos experimentado aquí en la Tierra (hasta ahora con el LHC). Al no haber experimentado con esos valores, no podemos estar seguros de que nuestra teoría sea válida en esa etapa de la evolución. De hecho sabemos que a esas escalas de tiempo y tamaño de nuestro universo tenemos que mejorar nuestras teorías, ya que en este momento aún no sabemos cómo reconciliar la interacción gravitacional con las otras interacciones (electromagnética, nuclear débil y fuerte) a nivel cuántico.

fluxUna de las ideas más recientes – relacionada con el problema precisamente de entender a nivel microscópico a la gravedad – contempla la posibilidad de que existan más de las 4 dimensiones que hemos verificado. Obviamente si hay una teoría o modelo que sugiera la existencia de más de 4 dimensiones, la pregunta más interesante es: ¿Cómo lo verifico? ¿Cómo puedo verlas? ¿Cómo son?

El LHC tiene el potencial de explorar y descubrir aspectos de la naturaleza que quizás den pistas y/o confirmaciones sobre las ideas que hemos generado para tratar de dar solución a este tipo de problemas. Muy probablemente también (o más bien) nos enseñe que nuestras ideas y especulaciones actuales son cortas y que existen más fenómenos de los que nos hemos podido imaginar.


Se solicita su tiempo

mayo 7, 2013

time-travel-clockAcabo de recibir un comentario en este blog en el que me preguntan ¿qué es el tiempo? No es una pregunta extraña, de hecho es bastante común que surja. Es una pregunta frecuente además en varios escenarios: charlas de divulgación, pláticas de café, clases de física, conferencias de física, etc.

Se me ocurre entonces, y para matar el tiempo hacer un pequeño concurso. Invito a los asiduos lectores de este su blog Conciencia en Colima a que sometan un breve ensayo describiendo qué es el tiempo. Las únicas condiciones son: un máximo de 900 palabras y entregarlo por correo electrónico (fefo.aranda at gmail.com) antes del 31 de mayo de este 2013.

El ensayo ganador será elegido por un comité muy selecto formado por mi.

El premio: nada. Bueno, aparecerá publicado aquí y en algún periódico local.

Suerte…


¿Y se mueve o no se mueve?

mayo 6, 2013

Galileo -Inquisicion gEl problema que nos ocupa empezó con Galileo Galilei. Me atrevo a decir que todos hemos escuchado algo acerca de Galileo. Seguramente sabemos que tuvo algo que ver con el desarrollo del telescopio, que la iglesia (católica) se lo quería escabechar y que luego lo perdonó (eso si, tuvo que esperar casi 400 años), que era muy sangrón y arrogante, que lanzaba objetos desde la torre inclinada de Pisa, que si si, que si no. Todo eso puede ser interesante revisarlo y comentarlo pero lo que nos interesa – y en lo que nos concentraremos en este momento – es en lo que representa la contribución más grande que haya hecho Galileo (y quizás cualquier persona): Galileo nos enseñó el poder de la experimentación. Observar y registrar fenómenos naturales. Crear y reproducir, a través de experimentos cuidadosos, fenómenos naturales. Dicho así parece una simplonada, sin embargo representa la base sobre la cual todo el aparato del conocimiento humano se sustenta.

La razón es muy sencilla. Si alguien proclama que entiende y puede explicar algún fenómeno de la naturaleza, no bastará con un discurso. No. Ahora (bueno, desde hace 400 años), gracias a la experimentación, tendrá que encontrar la manera de explicar de manera cuantitativa, verificable y precisa, los resultados obtenidos de manera experimental. Ejemplo: una observación cotidiana bastante natural y sobre la cual casi nunca pensamos es el hecho de que nos caemos. Si brincamos regresamos al suelo. Si lanzamos una piedra hacia arriba ésta regresa. Al parecer “todo lo que sube baja”. No nos debe sorprender que podamos utilizar nuestra imaginación para diseñar toda una serie de ideas que “expliquen” el porqué de dicha realidad. Podemos incluso tener discusiones acaloradas sobre tal o cual forma de explicarlo y será difícil decidir cuál de ellas, si es que alguna, es una mejor descripción de lo que sucede. Habrá incluso – creanme – cerebros humanos que lleguen a decir que cualquier explicación es tan válida como cualquier otra (por lo general este tipo de patología cerebral está asociada a uno de dos tipos de problemas: una increíble incapacidad de aceptar evidencias y cambiar la forma de pensar y/o una cuantiosa pereza mental). Durante siglos, antes de Galileo, todo así era: ¡puro rollo!

pisaSin embargo podemos hacer lo siguiente: con una cinta de medir y un buen reloj (¡Galileo utilizaba péndulos!) medimos el tiempo que un cierto objeto tarda en caer desde una altura determinada (la cinta desde luego es para medir la altura). Luego lo hacemos para el doble de la altura. Luego para el triple y así sucesivamente hasta que nos cansemos o no podamos llegar a más altura. Luego repetimos el proceso pero con otro objeto y con otro y luego con otro. Registramos todos los datos que obtengamos. Ahora si, si le pedimos a uno de los sabios que generó un esquema para explicar porqué las cosas caen que nos diga cuánto tiempo tardará en caer uno de esos objetos desde una de las alturas que registramos y nos lo dice acertadamente, podremos decir que ese esquema puede ser apropiado. Si puede decirlo para todas las alturas registradas pues aún mejor. Si luego puede decirlo para todos los objetos pues nos sentiremos muy contentos. Si además nos dice algo sobre lo que no hemos experimentado, es decir, si además hace predicciones y luego hacemos experimentos para verificar esas predicciones y sigue funcionando, entonces estaremos borrachos por la celebración.

Una vez recuperados de la cruda, mas no de la emoción, podremos preguntarnos si el esquema es “la verdad”. Bueno, la conclusión a la que podemos llegar es que ese esquema es el mejor hasta ese momento para describir ciertos fenómenos de la naturaleza (la caída de objetos en este ejemplo). Eso es todo. En la ciencia no hay verdades absolutas. Siempre se sigue buscando la manera de llevar al límite las explicaciones a través de experimentos cada vez más precisos (utilizando mejores relojes y cintas de medir, por ejemplo) y eso ha permitido ir mejorando y modificando las explicaciones. A este tipo de explicaciones, sustentadas en experimentos y con poder de predicción, les llamamos teorías físicas. Pero más importante: lo que si podemos hacer con certeza es determinar qué ideas o esquemas están simplemente mal, equivocados, incorrectos. Gracias a este mecanismo podemos discernir entre una explicación que puede tener algo de validez y una que no sirve. Esta posibilidad es extremadamente valiosa y ha permitido, en tan solo cuatro siglos, avanzar e incrementar el conocimiento humano de una manera impresionante comparado con todos los milenios anteriores. A veces es difícil percatarlo, sobre todo cuando estamos un poco alejados de los lugares en donde sucede día con día, pero en los últimos 50 años se ha generado más conocimiento que en toda la historia previa de la humanidad. Eso obviamente ha modificado (y seguirá modificando) de manera importante la vida de todas las personas.


Perfiles científicos: ELENA CÁCERES

abril 28, 2013
Elena

Elena

Con el propósito de presentar y dar a conocer ante nuestra comunidad (universitaria y en general) a algunos de los científicos más sobresalientes de la Universidad de Colima, presentamos esta breve e informal entrevista. En esta ocasión nos responde la Dra. Elena Cáceres, quien se cuenta adscrita a la Facultad de Ciencias y al Centro Universitario de Investigación en Ciencias Básicas.

¿De dónde eres, dónde creciste?

Soy de Lima, Perú. Crecí en Lima, en el distrito de Breña, en el centro de la ciudad.

Si recuerdas, ¿a qué querías dedicarte cuando tenías alrededor de 10 años?

A los 10 años quería ser “Jefe”. De qué o de quién no importaba, solo quería ser Jefe.

No es que me gustara mandar, eso me era indiferente — o por lo menos no lo recuerdo. Lo que me disgustaba profundamente era tener que obedecer. La única manera de escapar de eso “cuando fuera grande” me parecía era ser “Jefe”. Esa era toda mi aspiración, ser Jefe para que nadie me diga que hacer y que no hacer.

¿Porqué decidiste dedicarte a la ciencia? ¿recuerdas cuándo sucedió?

En el bachillerato tuve un profesor de física muy bueno. A diferencia de mi profesor de matemáticas, que era un señor viejito que casi se dormía dictando clase, el de física era un estudiante de ingeniería con entusiasmo, buen carácter y que sabía de lo que hablaba. No usábamos ningún texto, él llegaba y nos contaba lo típico sobre planos inclinados, poleas o proyectiles, pero lo hacía con tal pasión que capturaba nuestra atención. Fue en esos años que empecé a pensar que ser físico debe ser divertido.

¿En dónde estudiaste tu doctorado y porqué ahí?

Hice mi doctorado en la University of Texas at Austin (USA). Fui a USA porque había escuchado que ahí ofrecían “becas” para los estudiantes de doctorado. Estuve un par de años en Francia y sabía que estudiar un doctorado y trabajar a tiempo completo es muy difícil, así que necesitaba algún sitio donde ofrecieran ayuda económica. En ese entonces no tenía ni la más remota idea de qué universidades en USA eran buenas o no. Como tenía opción a postular a 4 universidades escogí 2 sitios donde me gustaría vivir (Hawaii y Alaska), UT Austin porque había un premio nobel en altas energías – así que debía ser un sitio OK y Columbia porque la había escuchado mencionar en alguna película (¿Woody Allen?). Queda claro que en ese tiempo no me tomaba lo de la “carrera” muy en serio. Recién cuando llegue a Austin empecé a pensar en mi misma como una física de verdad.

¿Describe brevemente que hiciste en tu tesis de doctorado?

Teoría de cuerdas es una teoría en 10 dimensiones. Como observamos solo 4 dimensiones existe en teoría de cuerdas un mecanismo llamado “compactificación” que postula que las dimensiones extras – las que no vemos – están enrolladas en una variedad de 6 dimensiones. En mi tesis de doctorado analicé cuán grande puede ser esta variedad 6-dimensional, cuáles son las restricciones en su volumen.

¿Dónde has trabajado?

He trabajado en la University of California at Los Angeles, en el International Center for Theoretical Physics de Trieste, Italia, en Brown University, en el CINVESTAV y en la Universidad de Colima.

¿Cuándo llegas a Colima? ¿porqué Colima?

Llegue a Colima en 2005. Antes estuve dos años en el CINVESTAV y me me sentía muy cómoda en México. La cultura, la sociedad mexicana es muy similar a la peruana y quise quedarme en México. Cuando enseñé en Brown no sentí ninguna conexión con los estudiantes, no me identificaba con ellos para nada. En cambio en México es como estar en Perú, enseñar acá es gratificante emocionalmente.

En los dos años que estuve en el DF pude vislumbrar muchos defectos del ambiente académico: endogamia, proteccionismo, aislamiento intelectual, falta de competencia, etc. Pero lo que más me perturbaba es que todos esos defectos se tomaran como “normal”. Nadie parecía poder o querer hacer las cosas de una manera diferente. En Colima encontré un grupo de profesores que justo luchan contra todo eso, que trabajan con estándares internacionales, que tratan de cambiar y mejorar su entorno, que comparten mi visión de ver las cosas.

¿En qué trabajas actualmente?

Hago teoría de cuerdas; trabajo principalmente en aplicaciones de la dualidad gauge/gravedad también conocida como AdS/CFT o como holografía.

Se dice que la ciencia es una actividad útil a la sociedad y que los países deben apoyarla. ¿Estás de acuerdo con eso? ¿Porqué? Tu trabajo ¿de qué sirve o para qué puede servir?

Esta es una pregunta muy amplia, con muchos ángulos y es difícil contestarla en toda generalidad.

Es claro que países en crecimiento, como México, no llegarán a ser países “desarrollados” si no hay apoyo para la ciencia. Se necesita poder crear y adaptar tecnología a las necesidades locales. Un ejemplo es el desarrollo de la investigación en agricultura del maíz en México. No apoyar a la ciencia y tecnología mantiene a un país en una situación de dependencia al tener siempre que importar los conocimientos científicos y la tecnología necesaria.

Si hablamos específicamente de física, algunas ramas tienen aplicaciones tecnológicas o comerciales muy directas; es fácil argumentar la utilidad de los láser y los microscopios de efecto túnel. Por otro lado, hay campos, como el mio, que son muy abstractos y que no tienen ninguna aplicación utilitaria a la vista. Todos los físicos esperamos que nuestras teorías – por más abstractas que sean – sirvan para entender fenómenos de la naturaleza. Y esa es la meta, para eso “sirve” lo que hago, para entender mejor el universo. Queremos contestar preguntas como ¿por qué vivimos en 4 dimensiones? ¿que pasó justo después del Big Bang? ¿qué pasa en el interior de un agujero negro? Las respuestas contribuirán al edificio del conocimiento humano y eso debe ser apoyado.

Aparte de la ciencia, ¿qué otros intereses “fuertes” tienes?

Diría que me gusta el arte en general; la pintura y la literatura en especial.

Si no te dedicaras a la ciencia, ¿qué te gustaría hacer?

Me gustaría ser grafitera. Pintar graffitti en las paredes, las veredas y en los buses. Hacer arte que no se puede comprar porque esta en la calle y pertenece a todos.

Si tuvieras que dar UNA recomendación a una persona que actualmente está pensando a qué dedicarse, ¿cuál sería?

Que no le hagan caso a nadie y decidan por si mismos.


Cazando fantasmas

abril 15, 2013

Prácticamente no interaccionan con nada. Si llenáramos el espacio exterior con agua podrían atravesar, en promedio, una distancia aproximada de 7 años luz sin interaccionar con los protones y neutrones del agua. Esta situación representa un problema ya que para cazarlos se requiere que interaccionen con nuestras trampas.

ghostbusters-2-1-1024Bueno, en realidad no son fantasmas. A diferencia de éstos nuestros protagonistas si existen y – aunque difícil – hemos podido detectarlos y estudiarlos. Se les conoce como neutrinos y el primero fue descubierto en 1956. Desde entonces hemos descubierto que existen tres tipos distintos y de que, contrario a lo que se creía en un principio, tienen masa. Pequeña, pero tienen.

Algo muy interesante de los neutrinos es que a pesar de ser difíciles de detectar son las partículas más abundantes en el universo. Las estrellas funcionan gracias a la fusión nuclear que consiste en la unión de dos átomos en otro más pesado y energía. Esa energía se manifiesta en forma de fotones (luz) y neutrinos. Para darnos una idea del número de neutrinos producidos en una estrella les pido que observen la uña de uno de sus dedos, el que sea, no importa. Bien, pues cada segundo atraviesan su uña alrededor de cien mil millones de neutrinos producidos por el Sol.

¿Y entonces cómo los detectamos? Como dijimos antes, en promedio los neutrinos atraviesan todo sin interaccionar. En promedio significa que unos atraviesan más, otros menos, pero que la mayoría atraviesan alrededor de los 7 años luz. Obviamente para detectarlos necesitamos que al menos algunos de ellos interaccionen en una distancia mucho menor a 7 años luz. De hecho, si queremos detectar neutrinos que se produjeron en el Sol, necesitamos que interaccionen dentro de unos 8 minutos luz, es decir, dentro de la distancia entre el Sol y la Tierra. Peor, como no podemos llenar de agua el espacio entre el Sol y la Tierra, en realidad lo que necesitamos es que los neutrinos interaccionen dentro de algún recipiente con agua que podamos fabricar. Lo único que nos puede salvar y hacer posible la detección es precisamente el hecho de que el Sol produce una cantidad enorme de neutrinos. La mayoría – la gran mayoría – atravesará la Tierra y los detectores que construyamos sin dejar ningún rastro, pero es posible que algunos pocos si logren interaccionar y que seamos capaces de registrar esa interacción. ¡Es una locura!

La interacción: Lo que esperamos es que uno de ellos colisione con un protón del agua. Esta colisión hará que el intercambio de energía genere la creación de otras partículas. Una de ellas será un positrón, que debido a la gran cantidad de energía intercambiada se moverá con una rapidez superior a la de la luz en el agua (nada viaja más rápido que la luz en el vacío, pero la luz viaja más despacio en el agua, así que es posible que un positrón viaje más rápido que la luz en el agua) y ésto generará un tenue destello de luz muy específico que se puede buscar y registrar.

neutrino_detector_super_kamiokandeDetector: Necesitamos un tanque de agua lo más grande posible. Este tanque de agua deberá tener en sus paredes algo que sirva como receptor de luz para poder detectar los destellos generados por los rápidos positrones. Además, para estar seguros de que lo que le pegó a los protones del agua fueron los neutrinos y no alguna otra partícula metiche que anduviera viajando por ahí, necesitamos poner el tanque en el interior de una mina o una montaña para que la roca absorba cualquier otra partícula impostora. ¡Así se cazan los neutrinos!

¿De dónde vienen los neutrinos? Los neutrinos son producidos en cualquier tipo de reacción nuclear. Nosotros emitimos positrones y neutrinos a cada rato, debido al potasio inestable que tenemos en nuestro cuerpo. La Tierra produce radiación en su interior (eso es lo que calienta el material que sale del volcán) y por lo tanto emite neutrinos. Sin embargo para poder detectarlos necesitamos que se produzcan en cantidades inmensas. Hay tres fuentes principales que utilizamos. Una: el Sol. Otra es la atmósfera. En este caso son los rayos cósmicos (principalmente protones) que vienen del espacio exterior y colisionan con los gases de la atmósfera generando cantidades importantes de neutrinos. NeutrinosFinalmente la tercera fuente son los reactores nucleares construidos por nosotros mismos. Otra fuente interesante son las supernovas, estrellas que mueren en una gran explosión liberando cantidades inmensas de neutrinos. El problema con éstas es que necesitamos esperar a que estalle una para poder recibirlos, no representan una fuente constante de neutrinos (por eso no la cuento como parte de las 3 principales).

Un comentario final: el Sol produce fotones (la luz que nos llega y es responsable de la fotosíntesis y tu vida) y neutrinos. Un fotón producido en el interior del Sol colisiona con los protones y neutrones presentes en el medio solar y tarda en salir y llegar a nosotros alrededor de un millón de años. Los neutrinos no interaccionan y salen inmediatamente. Entonces, para poder ver el interior del Sol como es ahora, necesitamos ver los neutrinos, no la luz. Para ver el interior del Sol tenemos que ir a un tanque de agua situado en el interior de una mina a buscar un pequeño destello de luz producida por un positrón que a su vez fue producido por un neutrino solar. Maravilloso.

¿Y de qué sirve todo esto? ¿ideas?


Una idea descabellada, insensata

abril 7, 2013

Al contemplar nuestro alrededor nos damos cuenta que existe una multitud de objetos con características muy distintas. Colores, texturas, formas, olores, consistencias, temperaturas y sabores que nos invaden y dentro de los cuales existimos. Al contemplarlo con calma nos damos cuenta que no es obvio encontrar patrones o semejanzas en dicha vastedad de propiedades. ¿Qué puede tener en común la sangre humana con la pantalla de un televisor? ¿En qué se parece la hoja de papel en que están escritas estas palabras y el ojo de un sapo? ¿La arena caliente y seca del desierto comparada con las escamas de un pez?

Hace mucho tiempo surgió una idea descabellada: todo lo que existe está hecho, conformado, por unos cuantos elementos básicos. Unos cuantos entes fundamentales a partir de los cuales todo – si todo – lo que existe en el universo está formado. Estarán de acuerdo en que suena descabellado, demasiado simple ¡Sencillamente absurdo!

atoms1Con la aparición de la ciencia hemos ido adquiriendo un poco de conocimientos acerca de la naturaleza. Tenemos una herramienta que nos permite poner a prueba las ideas, aún las más descabelladas, y ver si tienen algo de razón o si son simplemente erróneas. Aunque estamos de acuerdo en que la idea arriba mencionada es descabellada, no deja de ser interesante y atractiva. De ser cierta podríamos intentar explicar todo lo que nos rodea a partir de sus elementos básicos. Tendríamos la oportunidad de intentar comprender toda esa vasta e intimidante gama de fenómenos a partir de algo simple y sencillo. ¡Es obvio que tenemos que averiguar si la idea tiene algo de sentido!

¿Cómo empezamos? Lo primero que se nos ocurre es agarrar una muestra de algún material y cortarla en trozos lo más pequeños posible. Luego podemos hacer lo mismo con otro material y comparar los trozos. Claro está que para poder cortar los trozos cada vez más pequeños necesitaremos utilizar cuchillos cada vez más delgados y filosos. Llegará un momento en que será imposible utilizar un cuchillo y tendremos que recurrir a algún otro método para cortar. Tendremos que inventar nueva tecnología que nos permita hacerlo.

Los primeros logros en esta dirección se dieron durante el siglo XIX. La química y la física permitieron ir desentrañando una aparente estructura básica en todos los materiales que se analizaban. Con la tecnología de ese momento se empezó a constatar que existían ciertas sustancias que al tratar de dividirlas ya no se podía. Los científicos de la época se apresuraron a determinar si existía un número finito de dichas sustancias y cuáles eran sus propiedades. Así se fueron descubriendo los llamados elementos químicos: sustancias que ya no pueden ser separadas en otras. Sustancias inseparables, indivisibles. Llenos de entusiasmo por tan impresionante descubrimiento, los científicos de la época

se emocionaron y declararon haber encontrado los entes fundamentales a partir de los cuales todo está formado. A las sustancias les llamaron elementos químicos (por ejemplo oro, hidrógeno, tungsteno, etc.) y a los entes fundamentales de cada sustancia átomos (en nuestro ejemplo átomo de oro, de hidrógeno, de tungsteno, etc.).

periodic-coolEntonces, ¿es cierto que los átomos son los bloques básicos fundamentales a partir de los cuales está formado todo? Pues no. Tuvimos un momento de euforia y nos adelantamos a nombrar indivisible a lo divisible y, para que no se nos olvide el error, les hemos dejado el nombre de átomos a esas estructuras que encontramos y que parecían indivisibles. En efecto, todos los objetos que podemos ver están formados de átomos, sin embargo, como veremos en otro momento, los átomos son divisibles en entidades aún más pequeñas: quarks y leptones.

Antes de irnos recordemos que nos trajo hasta aquí. Partimos de la descabellada y absurda hipótesis de que todo lo que existe en el universo está hecho de algunos entes fundamentales básicos. Al descubrir lo que ahora llamamos átomos nos percatamos de que efectivamente todo parece indicar que la hipótesis es correcta. Ahora sabemos que los átomos en realidad si son divisibles y también conocemos de qué están formados. En el camino hemos desarrollado una impresionante cantidad de tecnología que ha podido ser también utilizada en muchas aplicaciones de la vida cotidiana. El ejemplo quizás más evidente es el internet, creado en el CERN, laboratorio donde se ha estudiado este tipo de problemas desde hace décadas. Es asombroso que una idea tan aparentemente ingenua y contraria a nuestra intuición, haya revolucionado nuestro entendimiento de la naturaleza y la forma en que vivimos. Más de las veces la naturaleza nos ha enseñado, a través de su estudio detallado y cuidadoso, que la realidad puede ser muy diferente a nuestras ideas preconcebidas. Casi siempre hemos tenido que cambiar la forma de pensar. En la ciencia se requiere una mente abierta, es decir, una mente inquisitiva, crítica y que además, ante la evidencia confirmada, sea capaz de reconocer que se equivoca.

Entonces, ahora si para poder irnos, les pido el siguiente favor. Piensen en la cosa (objeto) más desagradable que puedan imaginar. Ahora piensen en el objeto más bello y placentero que puedan imaginar. Bueno, ambos, y ustedes, están hechos exactamente de lo mismo.