¿Relatividad?

enero 28, 2014

einstein-1894_approx-young-sizedSi avanzo 50 metros durante 10 segundos en dirección Oeste, decimos que llevo una “velocidad” de “5 metros por segundo.” En realidad deberíamos decir “5 metros entre segundo,” pero como que se acomoda mejor la lengua al decir “por.” Es más, para ser verdaderamente cuidadosos y precisos tendríamos que decir “5 metros entre segundo en dirección Oeste con respecto al árbol que se encuentra enfrente de mi casa,” en otras palabras, para hablar de “velocidad” se requiere lo siguiente: unidades –  en qué se mide la velocidad, que en nuestro ejemplo son “metros entre segundo” (podrían ser kilómetros entre hora, pulgadas entre minuto, etc.). Se requiere también especificar la dirección en la que se mueve y esto conlleva a tener que especificar un “sistema de referencia,” en nuestro caso el árbol enfrente de mi casa.

Claro que cuando no es importante ser tan precisos, solamente decimos – ayer regresé por carretera y venía como a 140 – todos entenderemos que se refiere a kilómetros entre hora (y diremos kilómetros por hora) y que la dirección era hacia nosotros, es decir hacia Colima. Para no hacernos bolas ni aburrirnos, utilizaremos esa descripción menos precisa en lo que resta de este escrito.

Si voy en un coche a 50 km/hr y me dirijo derechito al árbol que se encuentra plantado enfrente de mi casa, y no freno, seguramente tendré algunos problemas. Ignoremos las obvias consecuencias de dicho encontronazo y pensemos en lo siguiente: desde la perspectiva de un pasajero de nuestro coche, el árbol se acerca a 50 km/hr, en otras palabras es posible verlo de esa manera. Si le pregunto a un insecto parado en árbol, el insecto también puede decir que el coche va a 50 hacia él o que el árbol (junto con él) va a 50 hacia el coche. Es equivalente.

Un choque más emocionante: si en lugar de que nuestro coche vaya en una trayectoria hacia un árbol va hacia otro coche, que a su se mueve en la misma dirección, entonces la cosa es más emocionante (y peligrosa). Supongamos por ejemplo que con respecto a la banqueta nuestro coche va a 50 km/hr hacia la derecha y que el coche de nuestros desafortunados amigos va a 50 km/hr pero rumbo a la izquierda. Repitiendo el ejercicio de arriba, si deseamos podemos decir que el coche enemigo viene hacia nosotros a 100 km/hr y viceversa. La velocidad es precisamente relativa y depende del sistema o marco de referencia con respecto al cual se mida. Así, si yo mido la velocidad del coche enemigo con respecto al volante de mi coche, aquel se acerca hacia mi volante con una velocidad de 100 km/hr. Si la medimos con respecto a la banqueta, uno lleva 50 a la derecha y el otro 50 a la izquierda. Creo que la mayoría de nosotros estaremos de acuerdo con lo que acabo de decir, y es además es efectivamente correcto, bueno, a medias.

Resulta que hace un poco más de 100 años Albert Einstein llegó a la conclusión de que lo que acabamos de describir es verdad, o casi verdad, solo cuando las velocidades involucradas son pequeñas con respecto a la velocidad de la luz, la cual es de aproximadamente 300,000 km/seg. Una vez que las velocidades sean comparables a la de la luz, encontraremos fenómenos físicos muy diferentes a lo que nuestra intuición y experiencia nos dice. Claro está que en nuestra vida cotidiana esos efectos no son apreciables ya que nos movemos con velocidades extremadamente pequeñas (comparadas con la de la luz), sin embargo existen muchos fenómenos naturales, incluyendo algunos que nosotros generamos, en los que si se manifiestan los cambios.

Para describir un poco de qué se trata consideremos lo siguiente. Como vimos arriba, la velocidad está relacionada con un desplazamiento espacial (avanzar una cierta distancia) realizado durante un cierto intervalo de tiempo. Si voy a 10 m/s quiere decir que me desplacé de un lugar a otro, separado por 10 metros, y que lo hice durante un segundo. Si efectivamente confirmo ese enunciado quiere decir que pude medir (o alguien lo hizo por mi) una distancia (10 metros) y un intervalo temporal (un segundo). Pues bien, lo que Einstein descubrió es que la velocidad de la luz es siempre la misma y es independiente del estado de movimiento de quien la observe. ¿Qué quiere decir esto? Quiere decir que si yo enciendo una luz en cierta dirección, un observador registrará que la luz llega a 300,000 km/seg independientemente de si yo me muevo o no. No importa si yo voy en un coche que viaje a la mitad de la velocidad de la luz y luego le “aviente” la luz de una linterna, el observador no verá la luz a 450,000 km/seg, la verá exactamente a 300,000 km/seg. De hecho, si en el ejemplo de arriba los coches fueran a 200,000 km/seg (comparable a la de la luz) en lugar de 50 km/hr, no determinarían 400,000, sino algo menor a 300,000.

tdgraphformula1¿Cómo es posible? ¿Qué sucede que haga esto posible? La consecuencia de la constancia de la velocidad de la luz es que cuando viajamos a velocidades tan grandes, el espacio y el tiempo se distorsionan de tal forma que la luz, independientemente de cómo nos movamos, mantiene su velocidad. A esto se le conoce como la relatividad especial que descubrió Albert Einstein, y al contrario de lo que comúnmente se le atribuye (de que todo es relativo y no podemos determinar nada), la relatividad especial está fundamentada en dos postulados bastante no-relativos: i) Las leyes de la naturaleza son iguales en todos lados y ii) la velocidad de la luz es constante e independiente del sistema de referencia.


¿Para qué sirven sus publicaciones? ¿Por qué mejor no se ponen a hacer algo que «de verdad» sirva?

enero 1, 2014

En el intento por describir  la importancia de la ciencia básica y su indispensable necesidad de ser financiada, la mayoría hemos escuchado y mencionado varios argumentos. Es típico decir que la investigación básica (teórica) ha generado una cantidad inmensa de conocimiento, que ha permitido inventar y generar tecnologías que utilizamos diariamente casi sin darnos cuenta. Esto no representa de ninguna manera la única aportación de la ciencia básica, pero siempre se menciona – y con razón: sin ciencia básica, no habría nada.

frase-el-cientifico-no-estudia-la-naturaleza-por-la-utilidad-que-le-pueda-reportar-la-estudia-por-el-henri-poincare-126291Algo que se nos olvida mencionar (a muchos), es que todos esos avances y repercusiones en el mundo tecnológico, han sucedido gracias a una sólida y organizada estructura de ciencia experimental básica y aplicada. Estructura que vive a la par de la ciencia básica teórica y que goza de la misma dignidad (si no es que más) y consideración. La ciencia de primer nivel se ha hecho en lugares donde existen las dos estructuras, ciencia teórica y ciencia experimental (por teóricca no me refiero a cuestiones de opinión ni de discurso, en la ciencia la palabra “teoría” significa el entendimiento comprobado y sustentado por medio de evidencias, que permite explicar y predecir).

Es fácil decirle a las autoridades que el sistema de posicionamiento global (GPS) no funcionaría sin la Relatividad General. Esto es una verdad absoluta, no se miente. Sin embargo dicho así no tiene ningún sentido. Para poder generarlo fueron necesarias tanto la Relatividad General como una enorme cantidad de desarrollo tecnológico, que va desde poder poner satélites en órbita, generar la electrónica adecuada, desarrollar materiales para los dispositivos, entro otros. Es fácil también decir que una gran cantidad de aparatitos electrónicos funcionan gracias a que se desarrolló la mecánica cuántica. Por supuesto que es verdad, y al igual que el GPS, para que vieran la luz, se requirió de investigación experimental – básica y aplicada – de primer orden y con muchas vertientes.

Creo que debemos de ser más honestos y cuidadosos cuando tratemos de explicar y justificar (porque además es nuestra obligación) la necesidad de que un país como el nuestro apoye la ciencia básica, teórica y experimental, lo cual estoy completamente convencido de que es imperante y urgente (bueno, si queremos mejorar, si no, no es necesario). Tenemos que tener cuidado cuando ponemos esos ejemplos simplones, ya que alguien mínimamente interesado podría preguntarnos qué contribuciones de ciencia básica hecha en México en los últimos 50 años, por ejemplo en física, han repercutido en algún aparatito.

Me parece conveniente que pensáramos cuidadosamente en emitir una explicación más fiel a nuestra realidad y que a la vez, pusiéramos un empeño decidido en impulsar, a través de todos los medios a nuestro alcance, el desarrollo de una ciencia más completa. Una ciencia que incluya todos los aspectos y que apoye todas las vertientes, de manera organizada y evaluando su relevancia de manera cuidadosa y honesta.

pasteurEn nuestro país existe un poco de ciencia básica teórica (poca y mal financiada, pero existe), muuuy poco de ciencia aplicada experimental (sin apoyo real ni decidido, casi siempre a medias y con exigencias de “impacto” inmediato y “visible”), pero casi nada de ciencia básica experimental. Para darnos una idea de lo que nos perdemos: es ahí, en la ciencia básica experimental, donde “se inventan” los nuevos aparatos y tecnologías que posteriormente permitirán a las demás disciplinas construir sus laboratorios. Antes de tener microscopios electrónicos, computadoras, equipos de resonancia magnética, etc.  (es decir, todo lo que se puede comprar ya construido), alguien tuvo que inventarlos. Alguien tuvo que necesitarlos. ¿Para qué? Seguramente para tratar de entender las propiedades más basicas de la materia, para investigar qué tipo de cosas nos llegan desde el Sol, para intentar “ver” y “explorar” la naturaleza donde nunca nadie lo haya hecho. Para ese tipo de cosas se ha tenido que inventar una gran cantidad de tecnología. Con lo que se descubre se entiende mejor a la naturaleza y eso nos permite a la vez seguir mejorando los inventos. Luego nos damos cuenta de que algunas de esas tecnologías pueden usarse con otros fines (estudiar la sangre, mejorar el concreto, los alimentos, etc.). Es un proceso rico y complejo en el que participan muchos actores. Mientras no contemos con una infraestructura robusta, que incorpore todos esos actores, será difícil contribuir de manera significativa como país.

También por eso es necesario pensar un poquito (ya con esta información) antes de decirle a los pocos investigadores de nuestro país: “Deberían ponerse a trabajar en proyectos que “de verdad” sirvan. Proyectos que “resuelvan” los problemas actuales, y no anden con sus abstracciones raras.” Como hemos visto, no se trata de que un científico decida o no dedicarse a tal o cual problema. Para tener un impacto “visible” se requiere de una infraestructura con todos los elementos, desde el más básico hasta el más aplicado. La razón por la cual en este momento tenemos un poco más desarrollada la ciencia básica teórica tiene una explicación muy sencilla: es la más barata. Es la que sí puede sobrevivir a pesar de politicas cambiantes y burocracias empedernidas. Es la que podemos hacer a pesar de la situación en la que nos encontramos. Necesitamos cambiar esa situación ya.


Complejo de realeza

diciembre 16, 2013

Nos encantan los títulos. Si no son nobiliarios no importa, para eso tenemos los académicos. ¿Cuántas veces no ha pasado algo como lo siguiente?: El Dr. Fulano de Tal va caminando por un campus universitario y un “simple” estudiante le dice “Hola Fulano, ¿cómo estás?” Fulano mientras tanto, con cara de ofendido, responde “Dr. De Tal, que mi trabajo me costó.” Estoy seguro que quienes hayan tenido la oportunidad de estudiar y/o trabajar en una universidad habrán escuchado algo muy similar. Quiero que  pongamos algo en claro: a cualquier individuo que diga algo así debemos responder inmediatamente y con absoluta certeza: “se nota que te costó demasiado.” 

titulos-nobiliarios-italianosEn tiempos en los que los títulos nobiliarios, perdón, quise decir académicos, son tan importantes para la seguridad y estabilidad emocional de las personas, intentaré describir qué quiere decir una palabrita que ha empezado a sonar y que recibe múltiples acepciones: Postdoctorado.

Antes de explicar qué significa me permito aclarar algo que no significa: El postdoctorado NO es un grado (ni título) académico.

Un título académico es aquel que (en principio) se obtiene al cumplir una serie de requisitos académicos y administrativos impuestos por una institución de educación superior. Para obtenerlos se «defienden» de alguna manera (exámenes, defensas de tesis, etc.) y al ser “aprobada,” la persona adquiere el título (un papelito que puede poner en un cuadro y colgar donde sea visible por la mayor cantidad de personas posible, si no ¿qué chiste?).  El título académico máximo que existe en este momento se llama “doctorado.”

La mayor parte de la investigación científica del mundo se realiza en universidades. También la mayor parte de la investigación científica se hace en países desarrollados. En la mayoría de ellos, las universidades contratan a sus docentes con el requisito mínimo de doctorado (no hay diferencia sustancial entre docentes e investigadores). Además, dado que ya cuentan con una tradición científica consolidada, el número de personas con doctorado es elevado, así que hay buena competencia para poder obtener una plaza de trabajo permanente. Esta situación ha estado presente en esos países ya desde hace décadas y conforme otros países emergentes se han unido (o intentan unirse) a esos esquemas, la competencia se ha internacionalizado. Así cuando una persona termina su doctorado tendrá que competir por una posición académica con personas de todo el mundo, desde luego todas con doctorado.

Para poder suplir las necesidades y mejorar la competitividad (y para poder ofrecer empleo no tan costoso en muchos casos), un recurso que surgió fue el de crear posiciones temporales, por lo general de 2 a 3 años, que correspondieran a la primera experiencia laboral de los recién doctorados. Se le llama posición postdoctoral. Es decir, un postdoc es un doctor que tiene una posición (laboral) temporal que le permitirá adquirir experiencia y mostrar sus habilidades con la finalidad de posteriormente obtener una posición permanente (por lo general en una institución distinta a la que lo contrató como postdoc y también a la que le otorgó el doctorado, es decir, dentro de lo posible evitar la endogamia académica). Por lo general, aunque varía un poco de disciplina a disciplina, las personas realizan dos o tres postdocs antes de conseguir una posición permanente. En países desarrollados obtener una posición permanente después de un solo postdoc es visto como un logro importante.

NoblezaEn países como el nuestro, que se encuentra en una transición académica en la que la investigación científica se empieza a realizar a lo largo y ancho  de su territorio y no solo en un par de instituciones, estos esquemas aún resultan «curiosos». En países/culturas en que un doctorado se ve como la meta y no como el requisito mínimo es difícil entender qué significa el postdoc. Por lo general se percibe al doctorado como un premio, recibido después de mucho esfuerzo y que, al obtenerlo, deberíamos ya descansar y ser adulados (¡oh sorpresa!). Así pues, para algunas personas entonces el postdoc les suena – agradablemente – como un posible nuevo título de nobleza: imaginen, no solo es doctor, ¡además tienen 2 postdoctorados. ¡Es un genio!

Lamentablemente esta situación permea incluso en los sistemas administrativos de la ciencia mexicana. Quienes hacemos ciencia estamos registrados ante el Consejo Nacional de Ciencia y Tecnología, el famoso CONACYT. En el sistema de captura de los “ridiculums” de los investigadores aparece el espacio en donde debemos poner nuestro “grado académico” y sí, en verdad , ahí en ese lugar existe la opción de postdoctorado. Da penilla.


ICTP

diciembre 5, 2013

salamDespués de haber obtenido su doctorado en el St. John’s College en Cambridge en 1950 y de pasar un año en el Instituto de Estudios Avanzados en Princeton, New Jersey, Abdus Salam regresa a su natal Pakistán en 1951 y se incorpora como “Professor of Mathematics” en el Colegio Gubernamental de Lahore. Su tesis de doctorado obtuvo una excelente reputación a nivel internacional y debido a cuestiones burocráticas su título fue emitido en 1952.

Al regresar se da cuenta de que le será imposible mantenerse conectado con el mundo científico y empieza a sufrir un aislamiento impresionante. El rector del Colegio le comunica que mejor se olvide de sus investigaciones, ya que para ellos eso no es una prioridad. Le da tres posibles funciones a ejercer durante el tiempo que le quede libre tras impartir sus clases: tesorero general del Colegio, prefecto de un dormitorio estudiantil o entrenador del equipo de fútbol. Salam escoge el puesto de entrenador sabiendo que deberá, lo más pronto posible, tener que abandonar su país y regresar al Reino Unido para continuar su labor científica. En el 54 regresa a Cambridge como instructor de matemáticas y “Fellow” del St. John’s College. En el 57 se convierte en “Professor” de matemáticas aplicadas en el Imperial College de Londres y eventualmente, en el 79, obtiene el premio Nobel de física junto con Sheldon Glashow y Steven Weinberg por su contribución al llamado “Moldeo Estándar de las partículas elementales.”

La experiencia – extremadamente resumida – que acabo de describir dejó una marca muy profunda en Salam. Tanto que decidió dedicar una cantidad importante de su tiempo y esfuerzo a la creación de un lugar en donde, los científicos de los países en vías de desarrollo, pudieran tener un espacio de “respiro” e interacción con el mundo científico de alto nivel. Tras gestionar, pelear, planear y decidir, al final, con el apoyo del gobierno italiano, la Agencia Internacional de Energía Atómica (IAEA por sus siglas en inglés) y la ciudad de Trieste (Italia), logró fundar el Centro Internacional de Física Teórica (ICTP por sus siglas en inglés) en Trieste. Fundado en 1964 ha sido sede de un gran número de eventos científicos y ha recibido a miles de investigadores de todo el mundo. Tiene un programa de estudios similar a una maestría diseñado para estudiantes que hayan cursado una licenciatura en un país en desarrollo. La idea es prepararlos para que luego puedan seguir en un doctorado de nivel internacional. Cuenta con un esquema de “Asociados,” que consiste en que investigadores que laboren oficialmente en instituciones de algún país en desarrollo puedan solicitar ser “asociados” al ICTP. Dicha membresía les permite/requiere visitar el centro por periodos que no excedan tres meses cada dos años (aproximadamente) y puedan participar en las actividades de investigación y aprovechar la interacción con el gran número de investigadores que desfilan por el centro todo el tiempo.

ictp

El ICTP inició con las áreas de física teórica y matemáticas. Empezó con estas áreas porque en realidad no podía empezar de otra manera, son las áreas base de toda la actividad científica y como la idea era fomentar la investigación en el “tercer mundo”, era necesario empezar por las bases. Conforme ha pasado el tiempo el ICTP ha crecido incorporando y cultivando nuevas áreas y en la actualidad cuenta con: el paquete original de física teórica (altas energías o de partículas, cosmología y astro-partículas) y matemáticas. A éstas le siguieron materia condensada y física estadística, física de la Tierra (geofísica, oceanología, física de la atmósfera, etc.) y física aplicada. Más recientemente se han incorporado las áreas de energía y sostenibilidad, biología cuantitativa y ciencias computacionales.

El director actual del ICTP es Fernando Quevedo, un físico de origen guatemalteco que se dedica a la teoría de cuerdas. Durante su periodo como director, Fernando ha tratado de impulsar la creación de centros regionales asociados al ICTP fuera de Italia y en países en desarrollo que tengan las posibilidades de hacerlo. Hace un par de años, motivados por esa visión del ICTP, un grupo de colegas propusimos que México participara con algo de ese estilo. Se logró convencer a algunas autoridades y se obtuvo apoyo por parte de la Universidad de Chiapas, básicamente gracias a la gestión y labor de Elí Santos Rodríguez, físico chiapaneco que se encargó de gestionar y organizar todo el proyecto. Actualmente existe ya un centro en Chiapas que funciona en coordinación con el ICTP y que pronto empezará a contratar nuevos investigadores para funcionar como un centro de atracción para los investigadores de la zona de Centro América, el Caribe y México (Mesoamérica). Las áreas que impulsará son, evidentemente, física y matemáticas, pero además, dado el contexto geográfico y actual de pertinencia e importancia, se desarrollarán también las áreas de energía y de medio ambiente (al menos al inicio, en un futuro espero que crecerá e involucrará muchas más áreas).

Estas líneas las escribo desde el ICTP y las escribo con mucha emoción. Es el entorno ideal para pensar que proyectos como el que tenemos en la Universidad de Colima y el de Chiapas son en realidad posibles: el ICTP es una muestra impresionante de ello.


Estrellas

diciembre 3, 2013

sirius_La vida y todo lo que hay en este planeta es consecuencia de las estrellas. No solo en este planeta, pero como nos gusta sentir que somos privilegiados y que representamos – por alguna razón – lo más importante de la naturaleza, pues digámoslo así.  Cuando digo consecuencia me refiero a que sin las estrellas no existirían los materiales para formar los planetas, ni la energía necesaria para que hubiera vida en el nuestro. Aquí digo nuestro porque no hemos encontrado vida en ningún otro, aunque en caso de existir, sería la energía de alguna o algunas estrellas la que le hubiera permitido hacerlo.

¿Qué es una estrella? Una estrella es un constante “jaloneo” entre átomos de hidrógeno. Bueno, principalmente de hidrógeno, ya que con el tiempo las estrellas van produciendo otros elementos. En el “jaloneo” participan las cuatro fuerzas de la naturaleza que conocemos: gravitacional, electromagnética, nuclear fuerte y nuclear débil. Ese “jaloneo” produce elementos químicos diferentes al hidrógeno y una cantidad inmensa de energía, parte de la cual recibimos como luz.

Veamos cómo está la cosa: El material más abundante en el universo, que no necesita de una estrella para existir, es el hidrógeno. Sus átomos son los más sencillos posibles: un protón y un electrón. El hidrógeno no está distribuido de manera uniforme en el universo y existen regiones con mucho y regiones con casi nada. En las regiones ricas en hidrógeno se forman “nubes” que poco a poco, gracias a la atracción gravitacional, se concentran en volúmenes cada vez más pequeños. Llega un momento en que son tan pequeñas que la repulsión entre los protones de los átomos ejercen una presión hacia afuera: la gravedad quiere hacer la nube más pequeña, pero la repulsión electromagnética se siente incómoda y quiere agrandarla. En ese estira y afloja ¡ganará quien pueda “jalar” más! Así muchas nubecitas se quedan nubecitas y otras tantas, que tienen una cantidad crítica de gas (masa), permiten a la gravedad ganar y la nube se sigue contrayendo. Notemos que en este proceso los átomos son sujetos de estiradas y jaladas en varias direcciones y por lo tanto están realizando movimientos rápidos y azarosos. El resultado de todo esto es que la temperatura de la nube, que no es otra cosa que el movimiento de los átomos, va aumentando conforme ésta se contrae.

Vencida la interacción electromagnética, los átomos se concentran cada vez más haciendo que sus protones se acerquen más y más aunque no quieran: la repulsión sigue estando ahí y pone resistencia, pero la gravedad de toda la nube gana y los sigue acercando. Eso sucede hasta que se logra llegar a un tamaño en el que las fuerzas nucleares “se despiertan”. Una vez que los protones casi se “tocan”, y la temperatura llega por ahí de los diez millones de grados centígrados, las fuerzas nucleares (débil y fuerte) empiezan a actuar: los protones en los núcleos de los átomos de hidrógeno (cuatro de ellos) se “fusionan” creando átomos de Helio y liberando en el proceso grandes cantidades de energía en forma de fotones, positrones y neutrinos. Los fotones liberados en ese proceso son reabsorbidos y rebotados por el gas de las capas exteriores durante cientos de miles (a veces millones) de años antes de “salir” de la estrella, para luego llegar a una de las fotoceldas solares que hemos construido, generando electricidad y así permitiéndonos presumir que usamos energía solar, que como vimos no es otra cosa que energía nuclear.

Tamaños-estrellasUna vez que se generan las reacciones nucleares tenemos una estrella. Las reacciones nucleares “detienen” el colapso gravitacional y el “estira y afloja” se compensa quedando una estrellita redondita que como dicen los cuentos y/o películas chafas: vivió feliz para siempre. Bueno, más o menos. En realidad no. El desenlace final de la pelea depende enormemente del tamaño inicial de la nube colapsada. Existen periodos en donde superficialmente pareciera que están en tregua y la estrellita brilla muy bonita y con un tamaño más o menos constante, pero eventualmente, conforme pierde cada vez más energía, la gravedad volverá a ganar y se colapsará un poco más, luego las fuerzas nucleares agarrarán un “segundo aire”, rebotará y volverá a encenderse creando elementos más pesados. Las fases y veces que esto puede ocurrir dependen crucialmente de la masa inicial de la estrella: la muerte de la estrella está dictaminada prácticamente desde el inicio. “Nuestro” Sol, por ejemplo, colapsará y tendrá un rebote que lo hará extenderse más allá de la órbita de Marte (y por supuesto ello hará que los planetas interiores, incluida “nuestra” preciosa Tierra, terminen pulverizados) para luego volver a contraerse finalmente en un objeto medianamente caliente, del tamaño aproximado de Júpiter y sin fusión nuclear. Otras estrellas son más presumidas y mueren en una tremenda explosión en la que generan una cantidad importante de elementos químicos pesados. Son estas muertes, llamadas supernovas, las que producen materiales que luego son utilizados para hacer los teclados de las computadoras en donde se escriben artículos sobre la muerte de las estrellas, entre otras cosas. Otra muerte estelar es la de convertirse en agujeros negros, pero eso ocurre solo para las estrellas obesas.


Mamá, papá, quiero ser matemática

noviembre 19, 2013

Y se llevó a cabo la Primera Semana de Física y Matemáticas en la Universidad de Colima (http://fejer.ucol.mx/semana).

La idea de organizar esta serie de eventos consiste por una parte en dar a conocer el tipo de cosas que realizamos en la Facultad de Ciencias en el día a día. Abrirnos y acercarnos un poco más a la comunidad, para que con suerte nuestro trabajo deje de ser algo desconocido. Por otra parte, la intención es acercar a las y los jóvenes con aptitudes e intereses científicos a la oportunidad de dedicarse a la ciencia. Jóvenes que, de alguna manera, sienten una atracción por el conocimiento y la naturaleza, pero que quizá no han contemplado una vida dentro de la ciencia, ya sea por no saber cómo es el quehacer científico, o peor aún, por tener una idea equivocada de lo que es. Recuerdo, por ejemplo, cuando era estudiante de bachillerato (ya llovió) que ni idea tenía de que era posible estudiar una carrera científica, mucho menos sabía en qué consistía una vida como científico. No conocía a nadie que se dedicara a eso; me parecía algo totalmente ajeno a mi entorno y a mi vida. Cuando pensaba en un científico, me imaginaba personas superdotadas y únicamente de países extremadamente avanzados. Nada que ver.

worried-motherY no sólo es importante mostrar esas oportunidades a nuestra juventud, es indispensable también informar y enamorar a las madres y padres de familia. No se imaginan (bueno, sí) la clase de miradas, contorsiones faciales, señas, espasmos y palpitaciones que sufren y manifiestan muchas de nuestras madres y padres cuando escuchan a una de sus hijas decir “Mamá, papá, me gustaría ser astrónoma”, o “Papá, quiero ser matemática”.

700.hqNos ha tocado escuchar todo tipo de respuestas y preocupaciones por parte de las familias que se han visto “afectadas” por tan terrible situación. Claro que después de explicarles que en realidad son familias afortunadas de tener una hija o hijo que quiera dedicarse a una de las carreras más necesarias para el futuro del país, les cambia la mirada y se sienten un poco mejor. Claro que no todos aceptan con la misma gracia que, por ejemplo, para que puedan convertirse en científicas y científicos será bastante probable (y de hecho recomendable) que durante su formación, la cual involucra no sólo una carrera universitaria (léase licenciatura), sino un doctorado, tengan que irse a vivir a otro lugar, posiblemente otro país. Para algunos padres y madres de familia eso les quita la fortuna. Pero aparte de esto, sí es posible mostrarles que de hecho deben sentirse inmensamente orgullosos y apoyar la decisión de sus hijas e hijos.

¿Dónde trabaja un científico? ¿De qué vive una investigadora? ¿Qué hacen los matemáticos? Si las maestras y maestros que nos dan clases de matemáticas no son matemáticos, entonces ¿qué es un matemático? Este tipo de preguntas y otras relacionadas son las que intentamos responder y discutir durante la “Primera Semana de Física y Matemáticas”. El evento fue un éxito y espero que le sigan muchos más.


Señor Sol

noviembre 19, 2013

Si fuera necesario agradecer por la existencia de la vida tendríamos sin duda que agradecer al Sol, al menos por la vida en este planeta. De hecho vemos el Sol gracias al Sol, es decir, gracias a que produce luz que llega a nuestros ojos y por eso lo vemos. Bueno, en realidad vemos la superficie solar, ya que la luz que se genera en las reacciones nucleares en el interior del Sol no llega directamente a nosotros. No podemos ver el centro del Sol, al menos no a través de la luz.

sunEl Sol produce la energía que nos mantiene vivos a través de varios procesos nucleares en su interior. En esos procesos, elementos como el Hidrógeno, se transforman en otros más pesados liberando importantes cantidades de energía, parte de ella en forma de luz (fotones) que es lo que hace que “brille”. Esos fotones liberados en la parte central del Sol son reabsorbidos y reemitidos por el material solar muchas veces antes de “alcanzar” la superficie y salir en nuestra dirección. De hecho, se puede estimar el tiempo promedio que tarda un fotón producido en el centro del Sol en “salir” y se obtiene que es alrededor de un millón de años. En realidad los fotones que nos están llegando en este momento, y que permiten que leamos el periódico (entre otras cosas) salieron de la superficie del Sol hace unos ocho minutos, pero fueron producidos en el interior solar mucho tiempo antes.

Por lo tanto no podemos ver el interior del Sol, ¿o sí? Bueno, con nuestros ojos no. Para empezar, si utilizamos los ojos quemamos las retinas, así que no nos conviene. Pero ese no es el único problema, el otro más difícil de resolver es que para ver el interior del Sol necesitamos recibir fotones que salgan directamente de su interior. Como describimos antes, esto es imposible. Entonces, repitiendo, no podemos ver el interior con nuestros ojos. Nos conformamos con ver la superficie (y en fotografías porque no queremos quemar las retinas).

Somos necios. Queremos ver el interior y ni modo, tenemos que lograrlo. ¿Cómo le hacemos? Pues resulta que la energía liberada por el Sol no es liberada únicamente a través de la luz (fotones), también se liberan otras partículas y en particular (para que suene redundante) el Sol libera en sus reacciones nucleares inmensas cantidades de neutrinos. Los neutrinos tienen una masa muy muy muy, pero muy pequeña, y son eléctricamente neutros (¡por algo el creativo nombre de neutrinos!). Son partículas que prácticamente no interaccionan con nada. Al no interaccionar casi con nada, la gran mayoría de ellas salen del Sol sin ser molestadas por el material solar. A diferencia de los fotones que son absorbidos, reemitidos, reabsorbidos y luego re-reemitidos (y así por cientos de miles de años), los neutrinos salen directamente. El Sol es “transparente” para casi todos los neutrinos (habrá por ahí algunos cuantos que interacciones, pero en promedio casi ninguno). Esos neutrinos salen del Sol y algunos en justo la dirección adecuada para pasar por la Tierra, que por cierto, también es transparente para los neutrinos, y pasan a través del planeta (y de nosotros) sin interaccionar. Otra vez, habrá algunos que si interaccionen, pero la gran mayoría pasará sin que se enteren de que había alguien celebrando que los Red Sox ganaron la Serie Mundial. Para darnos una idea de cuántos neutrinos atraviesan la Tierra consideremos lo siguiente: cada segundo, por una superficie de un centímetro cuadrado (la superficie de una uña), pasan alrededor de cien mil millones de neutrinos producidos por el Sol.

¿Cómo sabemos todo eso? Pues aunque suene extraño e ilógico, lo sabemos gracias a que de repente, casi nunca, pero de repente, uno de esos neutrinos sí interacciona con material de la Tierra. Entonces diseñamos un laboratorio para tratar de ver el efecto de esas interacciones. ¿Cómo le hacemos? Muy sencillo. Necesitamos un tanque de algún material con el que el neutrino deberá interaccionar. Como casi no interaccionan, para tener al menos un poco probabilidad de suerte, necesitamos el tanque más grande posible. ¿Qué significa que interaccione? Significa que el neutrino, al pasar por el material contenido en nuestro tanque, chocará con alguno de los átomos de ese material y generará partículas cargadas (como electrones por ejemplo) que saldrán a una velocidad muy alta, mayor a la velocidad de la luz en ese medio (la luz en el agua, por ejemplo, viaja más lentamente que en el vacío). Cuando esto suceda, la partícula súper veloz emitirá una radiación (luz) muy específica que podremos ver con algún tipo de detector de luz (que obviamente tendremos que poner en las paredes de nuestro tanque). Así de sencillo. ¿Qué material utilizamos para llenar el tanque? Pues como necesitamos ver la luz que se generará de las posibles colisiones, utilizamos algo transparente. Agua. Ah, y para que no nos confundamos con colisiones de otras partículas que andan por ahí de metiches, construimos el laboratorio en el interior de una mina o una montaña, para que la misma Tierra sirva de filtro. Así, con suerte y con un tanque cilíndrico de 40 metros de diámetro en su base y 41 metros de altura, rellenado en sus paredes con 6000 detectores de luz, podremos ver unas decenas de neutrinos cada año. Si, decenas. Si, aunque cada segundo pasen cien mil por centímetro cuadrado.

neutrino_detector_super_kamiokandeConclusión: para ver el Sol necesitamos buscar un tenue destello de luz dentro de un tanque de agua en el interior de una mina. Si esto no es bello, no sé qué podría serlo.


Higgsmanía

noviembre 4, 2013

Estamos en época de premios Nobel. Obviamente para la comunidad intelectual mexicana (y gran parte de la latinoamericana, creo) los que más se comentan y aprecian son los de literatura, paz y quizás, aunque menos, el de economía. Yo creo que ello se debe, entre otras cosas, a que son prácticamente los únicos en los que se “siente” que tenemos oportunidad de ganar, sobre todo los dos primeros. En fin, que estamos en época de anuncios y que se ha anunciado uno de los premios Nobel más esperados de la historia: el premio Nobel de física por la predicción del Higgs (¡esperó como 40 años!).

Francois-Englert-Peter-HiggsAsí es, el premio Nobel de física se anunció y fue otorgado a dos de las personas que predijeron la existencia de la partícula llamada Higgs, de la cual ya hemos discutido en este espacio y probablemente lo hagamos de nuevo en un futuro cercano. No se lo dieron a los que la descubrieron, al menos no este año. Se lo otorgaron a los que lo predijeron (bueno a dos de los que viven): Francois Englert y Peter Higgs. Espero pronto también comentar un poco sobre los premios otorgados en las áreas de Química y Medicina de este año.

Claro que todos los que de alguna manera estamos relacionados con el campo de la física, especialmente los que nos dedicamos a la física de partículas, estamos muy contentos y nos sentimos felices de este acontecimiento. Es más, ya en plan necio, hasta nos sentimos parte del premio. De hecho, el haber estado trabajando durante décadas en problemas relacionados con la partícula de Higgs, como que le da un sabor especial. Por un lado estamos los científicos que utilizando las ideas relacionadas con el Higgs, hemos ido más allá haciendo múltiples predicciones que están aún por verificarse (o en su defecto descartarse). Por otra parte, imaginen el beneplácito de las personas que estuvieron involucradas en la detección y confirmación de su existencia, cosa que sucedió en el Gran Colisionador de Hadrones o LHC por sus siglas en inglés. En ese colisionador han trabajado miles de personas: desde los que lo diseñaron y construyeron (colisionador y/o detectores), hasta los que participaron en la búsqueda específica de la partícula de Higgs. Existen también muchas otras personas buscando cosas nuevas que estamos esperando con ansia. Independientemente de quienes hayan trabajado específicamente en encontrar al Higgs, todas ellas se encuentran contentas y orgullosas de lo que ese laboratorio y colisionador han demostrado ser capaz de hacer.

mexican-hatEn ese intenso momento de emociones a veces suceden algunas cosas raras, especialmente cuando tenemos una inmensa necesidad de comunicar de manera rápida e impactante, a veces incluso sacrificando veracidad y prudencia. Así pues, en los días (horas) posteriores al anuncio, fue común ver en la prensa mexicana entrevistas realizadas a algunos colegas nacionales en donde, fuera de contexto, se les atribuía el decir que el premio tenía parte para los mexicanos, ya que también hubo mexicanos involucrados en el descubrimiento del Higgs: ¡Por fin un Nobel de física para México! (aunque sea un pedacito chiquititito, ¿no? Ándenle, no sean gachos.). Ahora que han pasado unos días más y que creo que el calor de la noticia se ha diluido un poco, me atrevo a hacer algunas precisiones.

Primero: el premio, como dije arriba, no fue otorgado a las personas que descubrieron el Higgs. El premio se otorgó a las personas (dos de ellas) que matemáticamente, utilizando teorías físicas bien establecidas y verificables, predijeron su existencia (así deben ser las teorías en la física, no son simplemente una idea de alguien; tienen que hacer predicciones verificables). Segundo: el premio lo podemos considerar parte de toda la humanidad, no solo de un país o un estado o del barrio en donde nació la persona galardonada. El premio fue otorgado a la predicción, pero sí gracias a que se ha confirmado su veracidad: ¡el Higgs existe! Por ende ha pasado a formar parte del bellísimo patrimonio humano de conocimiento que hemos logrado generar. Así que festejen todos, no importa de dónde sean. Tercero: en el descubrimiento del Higgs efectivamente participaron algunos científicos mexicanos. ¿Quiénes son? Existen dos “detectores” en el LHC que participaron en el descubrimiento; se llaman CMS y ATLAS. Los mexicanos que participaron directamente en la búsqueda del Higgs son (hay otros participando en otras cosas): Jacobo Konisberg del CMS quien trabaja en la Universidad de Florida, José Feliciano también en el CMS y trabajando en el CERN, Luis Flores Castillo de ATLAS trabajando en la Universidad de Wisconsin, Elizabeth Castañeda de ATLAS y de las Universidades de Wisconsin y Johannesburg e Isabel Pedraza quien un tiempo estuvo en ATLAS y en la Universidad de Wisconsin y más recientemente en CMS trabajando en la Benemérita Universidad Autónoma de Puebla.

A todos ellos una felicitación muy fuerte. Orgullosos debemos estar todos de que hayan logrado contribuir a este descubrimiento tan trascendente para el conocimiento humano.


Contemplando

octubre 29, 2013

La contemplación de la naturaleza representa una inmensa fuente de motivación para los seres humanos. Despierta en nosotros variadas sensaciones y en muchos casos nos incita incluso a actuar. La contemplación de la naturaleza es entonces buena y reconfortante. Sin embargo, si nos quedáramos solo en eso, en contemplar, nos perderíamos de la inmensa belleza que se encuentra en el entendimiento de los fenómenos naturales. Veríamos solo una pequeña parte, a veces la más insípida, de lo maravilloso que es la naturaleza y de la belleza que representa su posible entendimiento e interpretación por parte del cerebro humano. Hemos descubierto que cuando logramos dar un paso más allá de la simple contemplación, encontramos un universo extremadamente rico, interesante, misterioso y a veces comprensible.

Contemplando nuestros potenciales.Una cosa que me parece formidable es que prácticamente siempre que intentamos explorar un poco más sobre la naturaleza, ésta nos sorprende y nos muestra facetas que difícilmente hubieran podido si siquiera ser imaginadas. Aunque si hay veces que el cerebro humano logra vislumbrar posibilidades que efectivamente existen en la naturaleza y no se habían descubierto, algo que por cierto sucede muy pocas veces y siempre gracias a lo que ya se conoce (y no solo en la ciencia, que es donde más ocurre, sino también en los famosos casos de ficción y ciencia ficción), casi siempre es la naturaleza la que nos sorprende y nos muestra su impresionante creatividad. La mayoría de las veces andamos buscando algo y nos encontramos aspectos mucho más ricos e impresionantes de los que creíamos.

Claro que incluso en el caso en el que le “atinamos” es precisamente la naturaleza la que le atina, es decir, aunque a veces (o casi siempre) no seamos muy conscientes de ello, nosotros somos naturaleza. Todas las actividades del ser humano son manifestaciones de la naturaleza. Todas. Las que llamamos buenas y las que llamamos malas, las que trascienden y las que se olvidan, las que quieran o no, todas son manifestaciones de la naturaleza. Tratar de entender la naturaleza, en particular, ¡es entonces parte de la misma naturaleza!

Cuando intentamos describir o explicar algún fenómeno o situación es muy común que tendamos a pensar en la naturaleza como algo ajeno a nosotros. Pensamos en los fenómenos, sobre todo aquellos que involucran directamente a los seres humanos y sus actividades, como “aparte” de los fenómenos naturales, es decir, a veces, para poder investigar, es necesario hacer esa separación que sin embargo es ficticia y que en ocasiones, acostumbrados a hacerla de manera automática, puede olvidarse y podemos cometer el error de pensar que efectivamente son cosas distintas. Algo así como que el ser humano está en la naturaleza pero no forma parte de ella. Ejemplo: Una computadora, una bolsa de plástico y una poesía son todas manifestaciones de la naturaleza. Les llamamos artificiales para hacer claro el hecho de que fueron los seres humanos los que “las crearon”, y el término es adecuado y nos sirve para entendernos y comunicarnos, pero a veces olvidamos fácilmente que en realidad son “naturales”. Fueron formadas, ideadas, concebidas por la naturaleza. Si, efectivamente a través nuestro, pero naturales.

Por ende todo lo que puede pasar por la imaginación de todos los seres humanos es parte también de la naturaleza. Creo que a veces en nuestra inquietud por sentirnos privilegiados creemos, o queremos sentir, que cada uno de nosotros tiene una “realidad” y que por lo tanto existen varias realidades. No hay problema en pensar así, de hecho puede ser útil e inspirador. Lo que no debemos olvidar, al final, y que por cierto no es algo “malo” ni limitante, es que todas esas “realidades” son partes de una mucho más grande, que incluye muchas otras que nada tienen que ver con nosotros y que, algunas de ellas, gracias a la contemplación y a la exploración, hemos sido capaces de encontrarlas y apreciarlas.

Una cosa muy interesante es que desde que se inventó la actividad científica nos encontramos en una situación peculiar: cada día que pasa podemos decir que es el día en que la humanidad ha “sabido más” en toda su historia. Efectivamente son muchos los misterios y nuestro conocimiento de la naturaleza es muy pequeño, pero cada día sabemos un poquito más que antes. Afortunadamente la riqueza de la naturaleza nos tiene extremadamente entretenidos con muchos misterios aún sin resolver y seguramente muchos más aún por descubrir. El hecho de que aun considerando la complejidad y gran magnitud de fenómenos naturales seamos capaces de al menos comprender algunos de ellos es algo profundo y maravilloso. La naturaleza se contempla y se explora a sí misma. Como diría Sagan en algún momento (con mis palabras porque no me acuerdo de la cita textual) “el hidrógeno es el elemento más sencillo y más abundante del universo, pero no lo desestimen: denle unos cuantos miles de millones de años y empezará a preguntarse sobre su propia existencia”


No sé

octubre 21, 2013

Una de las cosas más útiles de la ciencia y el conocimiento científico es que nos permite decir “no sé.” Es difícil pero afortunadamente podemos. Otra cosa muy útil y poderosa de la ciencia es que, aparte de proveernos de conocimientos específicos, lo cuál hace con mucho éxito, nos permite saber cuándo algo es sospechoso, probablemente equivocado o totalmente descabellado. Y eso es bueno.

dudasEs bueno porque nos ayuda a avanzar. Declarar ignorancia es un ingrediente básico del avance científico que permite, entre otras cosas, valorar de manera importante cuando sí se sabe algo. Es por eso que a veces puede resultar difícil convencer a un científico de algo que no esté bien fundamentado. Los científicos cuestionamos (o debemos de cuestionar) prácticamente todo, precisamente porque sabemos que para que algo quede verificado y determinado con certeza, se requiere de un proceso bastante riguroso. Cuando decimos que se tiene un conocimiento, es porque hemos intentado por todos los medios disponibles de demostrar que no es cierto. Buscamos todas las posibles maneras de falsear ese conocimiento y no nos quedamos tranquilos hasta que varios grupos independientes llegan a las mismas conclusiones (claro que en el inter hay bandos encontrados, emociones, chismes, insultos, etc.). Proceso que puede tardar mucho y que requerimos por varias razones: una de ellas el simple hecho de que, por lo general, los seres humanos tendemos a equivocamos y nos engañamos a nosotros mismos con extrema facilidad. Tuvimos que diseñar mecanismos precisos que nos permitieran asegurarnos de que lo que observamos y verificamos es efectivamente lo que sucede. Encontrar “verdades” es difícil, si no ya las tendríamos.

Sin embargo fuera del ámbito científico no es común que aceptemos decir y menos que nos digan: “no sé.” Si un maestro contesta a la pregunta de su estudiante con un “no sé,” se percibe, por el estudiante y por el mismo maestro, como algo negativo. Al parecer es preferible que el profesor invente una respuesta incompleta o completamente llena de rodeos insustanciales. Todo – lo que sea – antes que decir: “no sé.” Otro ejemplo clásico es cuando vamos al médico. Si nos dice “no sé,” probablemente pensemos que es un mal médico y que no valió la pena la visita (ni el costo de la consulta, si es el caso). Por alguna razón, preferimos que nos mientan.

Es más común aceptar comentarios como: “si te untas esta cremita te vas a sentir mejor”, “es mejor porque es un remedio “natural” y no tiene efectos secundarios,” “en esa casa hay fantasmas,” etcétera.

En la ciencia el reconocer que no se sabe algo es el primer paso; sin ese es imposible avanzar. El siguiente paso consiste en proponer soluciones y respuestas que puedan ser verificadas y sustentadas. No se trata de que, por no saber algo, cualquier posible explicación sea válida (eso sería absurdo o tonto, por decirlo de manera coloquial). Este es un concepto importante. Después de decir (y por lo tanto reconocer) “no sé,” se empieza a discutir, proponer, investigar, jugar; en otras palabras se empieza a disfrutar del proceso de pensamiento y exploración. El encontrar una respuesta y/o descubrir algo nuevo no es frío ni aburrido y no limita nuestra imaginación, al contrario, abre nuevos caminos y potencia nuestra creatividad. El conocimiento adquirido es útil e importante, pero también el proceso de búsqueda, que inicia con decir “no sé,” es sabroso, muy sabroso.

Invito a los que hayan llegado hasta este renglón, sobre todo si son maestros (de cualquier nivel), a que practiquen este sencillo principio. Ante una pregunta de la cual no sepan la respuesta, cosa que es completamente normal (no tienen por qué saber todo), digan simplemente “no sé.” Luego, después de ver las reacciones de sus estudiantes (o de quien les haya preguntado), invítenlos a pensar sobre posibles respuestas. Contrástenlas, discútanlas, destrózenlas. No tiene absolutamente nada de malo destrozar una idea, una respuesta. No tiene nada de malo decirle a alguien, con quien se discute honestamente y con quien estamos compartiendo el interés genuino de búsqueda: “no, lo que dices es incorrecto”. Para eso existe el conocimiento y solo así se avanza. La idea o respuesta no es lo importante. Lo importante es tratar de llegar a satisfacer la duda de manera veraz y si no se puede no pasa nada, nos quedamos con la duda y seguiremos pensando en ella. Es mejor seguir dudando toda la vida que quedarnos con una “verdad” que sea mentira. Investiguen (juntos) en todos los medios que tengan a su disposición. Dependiendo del tema, si está a su alcance, busquen expertos en el área para corroborar sus conclusiones y discutir con ellos. Si no los quieren escuchar, busquen otros e ignoren a los primeros (ellos se lo pierden). En otras palabras, disfruten y aprendan dudando y reconociendo lo bello de la ignorancia. Solo así podrán apreciar lo maravilloso del conocimiento que hemos logrado adquirir, que es poco, pero bellísimo.