Viendo el Sol y los rayos cósmicos

septiembre 11, 2014

borexinoHabía comentado que para poder “ver” el centro de una estrella, es necesario detectar los neutrinos producidos en su interior. Si (como ejemplo) hablamos de la estrella que tenemos más cerca, el Sol, en su interior se producen constantemente una serie de reacciones nucleares que generan la energía que nos mantiene aquí. Una de esas reacciones se llama “protón-protón,” y es la que genera, en forma de de fotones (luz) y neutrinos, casi toda la energía del Sol. Los fotones pueden tardar cientos de miles de años para “escapar” de la estrella, ya que son absorbidos, emitidos, reabsorbidos, re-emitidos, y así sucesivamente un montón de veces (decimos que la estrella es “opaca” a los fotones), mientras que los neutrinos escapan inmediatamente: en el caso del Sol llegan a la Tierra en aproximadamente 8 minutos.

Supongamos por el momento que, en promedio, los fotones del Sol tardan en “salir” cien mil años. Entonces, cuando nosotros los vemos en la Tierra, si los analizamos con cuidado, podríamos esperar que nos dieran información de cómo era el interior del Sol hace alrededor de cien mil años. Por otro lado, si logramos detectar (ver) y analizar los neutrinos emitidos, quizá podremos obtener información de cómo era el interior del Sol hace ¡tan solo ocho minutos!

vesselinstall-borexinoApenas esta semana, el laboratorio italiano Gran Sasso, que tiene un detector de neutrinos llamado “Borexino,” anunció que lograron hacer precisamente eso: medir, en tiempo real, la energía del Sol. Además encontraron que, comparando los valores deducidos por la luz (los fotones de hace cien mil años), la energía producida en el centro del Sol es la misma hoy que hace cien mil años, lo que da una comprobación directa de que el Sol, nuestra estrella, se encuentra en una etapa de vida con una gran estabilidad. El experimento es resultado de colaboraciones entre varios países europeos (Italia, Alemania, Francia y Polonia), Estados Unidos de América y Rusia, y se tiene contemplado que seguirá tomando datos por al menos cuatro años más. Los resultados que obtendrán, seguramente serán de mucha utilidad e importancia para la física de partículas y la astrofísica.

2014_08_24_LanzamientoEn otras noticias, fue muy agradable enterarnos de que el 24 de agosto se lanzó el telescopio sub-orbital EUSO-Balloon, que es el primer prototipo completo de un futuro observatorio espacial llamado JEM-EUSO, que observará rayos cósmicos ultra energéticos.

En el espacio exterior existen procesos que generan partículas como por ejemplo: protones. Después de ser generadas (por ejemplo en explosiones de estrellas) viajan por el universo y pueden interaccionar con otras o con campos magnéticos generados por otras estrellas o galaxias o cúmulos de galaxias o cosas que aún no conocemos. En su camino pueden también cruzarse con el pedazo de materia que habitamos y llamamos Tierra. Cuando eso sucede, al ingresar a la atmósfera, inmediatamente colisionan con las partículas que forman los núcleos de los átomos de los que están formados los gases, y generan una cascada de colisiones que eventualmente llega a la superficie y se absorben en el agua, piedra, cerebro, o etcétera que se encuentre en el camino. Esto ha estado sucediendo todo el tiempo.

Detectar y estudiar esos “rayos cósmicos” puede enseñarnos sobre el universo, ya que fueron producidos en algún lado (que quizá podamos averiguar con su estudio), fueron acelerados por algún sistema (que quizá podamos averiguar con su estudio), pueden tener energías que no seamos capaces de producir en la Tierra y ello nos permita explorar fenómenos nuevos, y un largo etcétera. Lo interesante de este observatorio es que se espera que eventualmente brinde información sobre rayos cósmicos ultra energéticos. Resulta que se ha logrado observar la existencia de rayos cósmicos tan energéticos que no podemos aún entender cómo logaron obtener tanta energía. Dado lo que sabemos acerca de los objetos que existen en el espacio, uno espera que exista un límite de energía posible de producción y/o aceleración de los rayos cósmicos, sin embargo se ha logrado observar algunos que desafían esos límites, por lo que resulta sumamente interesante e importante obtener más información sobre ellos y determinar qué es lo que está sucediendo.

DSCF5155Otro aspecto que lo hace muy interesante para nosotros es que en este experimento existe participación mexicana. El Dr. Gustavo Medina Tanco, del Instituto de Ciencias Nucleares de la UNAM, junto con colegas y estudiantes de varias instituciones (los institutos de Geofísica e Ingeniería, y el CCADET de la UNAM, la Benemérita Universidad Autónoma de Puebla y la Universidad Michoacana de San Nicolás Hidalgo), ha participado de manera directa en la creación del EUSO-BAlloon, construido en los últimos tres años por una colaboración entre Alemania, Corea del Sur, España, Francia, Italia, Japón, México, Polonia y Estados Unidos de América, todo bajo la coordinación de la agencia espacial francesa CNES. Va una felicitación para ellos y el deseo de que sigan teniendo buenos resultados en el futuro de su colaboración.


Ya es tiempo

septiembre 3, 2014

Por si no tuvieron la oportunidad de leerlo en el Diario de Colima hace unas semanas, aquí va de nuez:

retroceder-en-el-tiempo1Se venció el plazo que dimos para hablar sobre el tiempo. Hace un par de meses, en un intento por interaccionar con ustedes, propuse que escribieran sus ideas sobre la pregunta ¿qué es el tiempo?

Es una pregunta muy difícil. Los conceptos más básicos e ingenuamente familiares resultan a veces ser los más profundos y difíciles de definir, entender y explicar. La meta del ejercicio no era la de obtener sesudos estudios sobre la definición del concepto, sino la de divertirnos pensando y tratando de formular ideas al respecto.

Me dio mucha felicidad (soy un egoista empedernido) recibir casi de inmediato varias contribuciones. Algunas de amigos conocidos y otras de lectores que aun no he tenido la fortuna de ver en persona. Las ideas que resultaron de sus análisis y elucubraciones me mantuvieron entretenido y contento.

Debo mencionar que hubo de todo. Para algunas personas fue tema de broma y enviaron algo solo con la intención de participar y saludar. Se les agradece. Hubieron quienes lo tomaron con demasiada seriedad e invirtieron un buen esfuerzo e investigación en el tema. Mi agradecimiento y felicitación a ellos también. Finalmente estuvieron aquellos que captaron de maravilla la idea que traté de imprimir: pensar un poco en el tema, analizar las ideas propias, expresarlas y divertirse. Quedé de seleccionar un ganador: no pude. En lugar de ello he decidido compartir algunos fragmentos que me gustaron y/o divirtieron. Espero los disfruten al igual que yo.

Antonio Alatorre Torres: Ya pasaron 10 segundos y la persona no se da cuenta pero, ¿qué paso en esos 10 segundos en los que el hombre miraba la correa de su reloj?
La respuesta es que absolutamente todas las cosas en el universo cambiaron. En pocas palabras el tiempo, coloquialmente, puede describirse como el conjunto de cambios de posiciones, velocidades, y en general estados de los sistemas físicos que existen en nuestro universo.

Jorge – el fantasía – Torres (fe de erratas: en el periódico apareció equivocadamente como «el fabuloso.» Ha quedado corregido): Creo que los únicos interesados en saber qué es el tiempo son los físicos y tal vez los filósofos, pues la demás gente se deja llevar por el pragmatismo, y para ellos el tiempo se vuelve una herramienta para su vida. Como ejemplo tenemos a un ingeniero, ¿de qué le podría servir saber qué es el tiempo, si ese conocimiento no será de utilidad para diseñar y fabricar sus aparatos? Él puede seguir trabajando sin importar si el concepto de tiempo es ignoto, o no; pues él sólo necesita saber cuántas revoluciones por segundo (ahí entra el tiempo) tiene el motor que investiga, por ejemplo.

Y ahora que ya estoy un poco entrado en tema, y a manera de despedida, el tiempo es lo que invertí al escribir esto.

Aurelio Figueroa: Unas de las frases que me gustan referentes al término en descripción, son las de Renato Leduc en su composición Tiempo y destiempo: “Sabia virtud de conocer el tiempo. A tiempo amar y desatarse a tiempo, como dice el refrán: dar tiempo al tiempo, que de amor y dolor alivia el tiempo… Amor queriendo como en otro tiempo, ignoraba yo aún que el tiempo es oro, cuánto tiempo perdí – ay – cuánto tiempo. Y hoy que de amores ya no tengo tiempo, amor de aquéllos tiempos, cómo añoro la dicha inicua de perder el tiempo.”

Y de verdad, cuánto tiempo perdí. Pero lo volvería a perder si pudiera perderlo de la misma manera, aunque hablo de dolor, ya que me queda muy “poquito”.

Gracias por darse el “tiempo” para leer a este tipo de concursantes, pero allí sí, ni modo, usted mismo hizo la invitación al público en general.

Carlos Barajas: Comienzo por decir que la verdad no sé qué es el tiempo. Para escribir estas líneas, decidí comenzar por preguntarle a algunos profesionistas – algunos de ellos con maestrías en áreas de arquitectura e ingeniería civil – ¿qué es el tiempo? y las respuestas que me dieron después de frases como: ¿a poco no sabes?, ¿para qué quieres saber?, no soy científico, etc., fueron las siguientes (más o menos, no los grabé mas que con mi disco duro biológico): Pues lo mides en años, meses, días y así sucesivamente (no contestó lo que le pregunté). Es lo que tarda el planeta en girar sobre su propio eje (otro que no me contesta qué es). Es una unidad de medición para poder organizar a la sociedad (¡Ja, ja, ja!, perdón, prometí no burlarme. No es burla pero me dio mucha risa).

Raymundo López Portillo Ortega: Por ultimo, y para mí lo más importante, es que el tiempo es lo más preciado que tenemos. He llegado a la conclusión de que el tiempo es vida. El tiempo que nosotros estemos sobre este mundo debemos aprovecharlo al máximo porque se nos va la vida, porque es lo único que jamás podremos recuperar. Podremos recuperar un amor perdido, una fortuna perdida, la salud, pero el tiempo no, jamás, por más que anuncien cremas rejuvenecedoras y que la jalea real, y que el bálsamo de la eterna juventud. No existe, no es real.

tiempo-esclavo-horas_2_697919Y para finalizar, nuestro amigo Stathis Tompaidis nos recuerda a Borges:

“El tiempo es la sustancia de que estoy hecho.

El tiempo es un río que me arrebata, pero yo soy el río;

es un tigre que me destroza, pero yo soy el tigre;

es un fuego que me consume, pero yo soy el fuego.

El mundo, desgraciadamente, es real;

yo, desgraciadamente, soy Borges”


¿Relatividad?

agosto 14, 2014

Si avanzo 50 metros durante 10 segundos en dirección Oeste, decimos que llevo una “velocidad” de “5 metros por segundo.” En realidad deberíamos decir “5 metros entre segundo” o «5 metros cada segundo,» pero como que se acomoda mejor la lengua al decir “por.” Es más, para ser verdaderamente cuidadosos y precisos tendríamos que decir “5 metros entre segundo en dirección Oeste con respecto al árbol que se encuentra enfrente de mi casa,” en otras palabras, para hablar de “velocidad” se requiere lo siguiente: unidades – en qué se mide la velocidad, que en nuestro ejemplo son “metros entre segundo” (podrían ser kilómetros entre hora, pulgadas entre minuto, etc.). Se requiere también especificar la dirección en la que se mueve y esto conlleva a tener que especificar un “sistema de referencia,” en nuestro caso el árbol enfrente de mi casa.

Claro que cuando no es importante ser tan precisos, solamente decimos – ayer regresé por carretera y venía como a 140 – todos entenderemos que se refiere a kilómetros entre hora (y diremos kilómetros por hora) y que la dirección era hacia nosotros, es decir hacia Colima. Para no hacernos bolas ni aburrirnos, utilizaremos esa descripción menos precisa en lo que resta de este escrito.

relative-bikeSi voy en un coche a 50 km/hr y me dirijo derechito al árbol que se encuentra plantado enfrente de mi casa, y no freno, seguramente tendré algunos problemas. Ignoremos las obvias consecuencias de dicho encontronazo y pensemos en lo siguiente: desde la perspectiva de un pasajero de nuestro coche, el árbol se acerca a 50 km/hr, en otras palabras es posible verlo de esa manera. Si le pregunto a un insecto parado en árbol, el insecto también puede decir que el coche va a 50 hacia él o que el árbol (junto con él) va a 50 hacia el coche. Es equivalente.

Un choque más emocionante: si en lugar de que nuestro coche vaya en una trayectoria hacia un árbol va hacia otro coche, entonces la cosa es más emocionante (y peligrosa). Supongamos por ejemplo que con respecto a la banqueta nuestro coche va a 50 km/hr hacia la derecha y que el coche de nuestros desafortunados amigos va a 50 km/hr pero rumbo a la izquierda. Repitiendo el ejercicio de arriba, si deseamos podemos decir que el coche enemigo viene hacia nosotros a 100 km/hr y viceversa. La velocidad es precisamente relativa y depende del sistema o marco de referencia con respecto al cual se mida. Así, si yo mido la velocidad del coche enemigo con respecto al volante de mi coche, aquel se acerca hacia mi volante con una velocidad de 100 km/hr. Si la medimos con respecto a la banqueta, uno lleva 50 a la derecha y el otro 50 a la izquierda. Creo que la mayoría de nosotros estaremos de acuerdo con lo que acabo de decir, y es además es efectivamente correcto, bueno, a medias.

einstein-1894_approx-young-sizedResulta que hace un poco más de 100 años Albert Einstein llegó a la conclusión de que lo que acabamos de describir es verdad, o casi verdad, solo cuando las velocidades involucradas son pequeñas con respecto a la velocidad de la luz, la cual es de aproximadamente 300,000 km/seg. Una vez que las velocidades sean comparables a la de la luz, encontraremos fenómenos físicos muy diferentes a lo que nuestra intuición y experiencia nos dice. Claro está que en nuestra vida cotidiana esos efectos no son apreciables ya que nos movemos con velocidades extremadamente pequeñas (comparadas con la de la luz), sin embargo existen muchos fenómenos naturales, incluyendo algunos que nosotros generamos, en los que sí se manifiestan los cambios.

Para describir un poco de qué se trata consideremos lo siguiente. Como vimos arriba, la velocidad está relacionada con un desplazamiento espacial (avanzar una cierta distancia) realizado durante un cierto intervalo de tiempo. Si voy a 10 m/s quiere decir que me desplacé de un lugar a otro, separado por 10 metros, y que lo hize durante un segundo. Si efectivamente confirmo ese enunciado quiere decir que pude medir (o alguien lo hizo por mi) una distancia (10 metros) y un intervalo temporal (un segundo). Pues bien, lo que Einstein descubrió es que la velocidad de la luz es siempre la misma y es independiente del estado de movimiento de quien la observe. ¿Qué quiere decir esto? Quiere decir que si yo enciendo una luz en cierta dirección, un observador registrará que la luz llega a 300,000 km/seg independientemente de si yo me muevo o no. No importa si yo voy en un coche que viaje a la mitad de la velocidad de la luz y luego le “aviente” la luz de una linterna, el observador no verá la luz a 450,000 km/seg, la verá exactamente a 300,000 km/seg. De hecho, si en el ejemplo de arriba los coches fueran a 200,000 km/seg (comparable a la de la luz) en lugar de 50 km/hr, no determinarían 400,000, sino algo menor a 300,000.

¿Cómo es posible? ¿Qué sucede que haga esto posible? La consecuencia de la constancia de la velocidad de la luz es que cuando viajamos a velocidades tan grandes, el espacio y el tiempo se distorsionan de tal forma que la luz, independientemente de cómo nos movamos, mantiene su velocidad. A esto se le conoce como la relatividad especial que descubrió Albert Einstein, y al contrario de lo que comúnmente se le atribuye (de que todo es relativo y no podemos determinar nada), la relatividad especial está fundamentada en dos postulados bastante no-relativos: i) Las leyes de la naturaleza son iguales en todos lados y ii) la velocidad de la luz es constante e independiente del sistema de referencia.


Impresiones y expectativas

julio 21, 2014

Desde que llegué fue impresionante. No era la primera vez que me encontraba en un lugar así, pero sí la primera vez que lo veía con una expectativa muy particular. Estar en medio de toda esa infraestructura científica puede ser abrumadoramente inspirador. Al verlo se entiende claramente el por qué del desarrollo de esos países, en este caso el de Japón.

Durante mi visita discutimos los pasos a seguir en la creación del grupo colimense que se inIMG_8626 al KEK. Hasta ese momento la discusión se había centrado en los aspectos generales a nivel administrativo. El director del Instituto de estudios de partículas y nucleares del KEK visitó en dos ocasiones nuestra Universidad para preparar y firmar los convenios necesarios. Ahora era turno de visitar los diferentes grupos y valorar nuestra participación. Me reuní con investigadores de todos los experimentos para compartir ideas y determinar intereses.

La mayoría de ellos no sabía de nuestras intenciones. Como dije antes, todo había sido manejado a nivel administrativo. Al enterarse de que estábamos ahí para considerar la creación de un nuevo grupo experimental, absolutamente todos los investigadores con los que hablé – de diferentes áreas y enfocados en diferentes experimentos – se mostraron interesados y sugerían que “los escogiéramos.”

Desde luego surgieron infinidad de preguntas e inquietudes. ¿Quiénes formarán el grupo? ¿En qué podrán contribuir al experimento? ¿Cómo piensan conseguir recursos? ¿Dónde está Colima? ¿Por qué se fijaron en el KEK?

Las preguntas más relevantes, que por ende nos entretuvieron más tiempo, fueron las relacionadas a los recursos humanos y financieros. En el caso de Colima la idea es generar un grupo nuevo. Adquirir recursos humanos nuevos que formen ese grupo y trabajen en el KEK. El mismo KEK participará en el proceso de selección de los candidatos. Cuando se les explicó esto (a los investigadores, las autoridades ya lo sabían) todos se entusiasmaIMG_8592ron y se sorprendieron gratamente. Empezaron a preguntar que si era necesario que hablaran español, que fueran mexicanos, que si esto, que si el otro. Una vez que se enteraron de los detalles vino el interés por Colima y México. ¿Cómo es Colima? ¿Dónde está? ¿Cómo es la Universidad? ¿Cuántos investigadores tiene? ¿En qué áreas? ¿Cuántos estudiantes? ¿Tienen laboratorios? ¿Cómo es la ciudad? ¿Es segura? ¿Cómo se viaja a Japón? ¿Hay vuelos directos?

Como podrán imaginar, se dieron conversaciones muy interesantes y de mucho detalle. Traté de explicar un poco sobre cómo son las universidades mexicanas y en particular el contexto de la Universidad de Colima. Intenté hacer una descripción del estado de Colima y sus municipios. Hablé de cómo se vive, un poco de su historia, de lo impactante de su geografía. La mayor parte del tiempo hablé, desde luego, de la Universidad y en particular de la facultad de ciencias. Hablé de cómo esa facultad ha funcionado en los últimos 10 años y cómo ha generado un grupo de investigación muy fuerte a través de la incorporación de investigadores por medio de concursos internacionales abiertos. Hablé de las carreras de física y matemáticas y el enfoque que se les ha dado. Hablé de cómo un gran porcentaje de los egresados se encuentran realizando doctorados en universidades extranjeras financiados por esas mismas instituciones. Aprovechando todo eso concluí comentándoles que precisamente ese desarrollo es el que había llevado a que propusiéramos la creación de un grupo experimental de primera, algo difícil de hacer sin infraestructura de primer nivel, en colaboración con un laboratorio como el KEK.

Para no cansarlos con demasiados detalles, comentaré solo un par de cosas que salieron en las conversaciones, que de alguna manera, reflejan expectativas culturales de los dos lados. Por mi parte, una de mis preocupaciones consistía en asegurar que los procedimientos serían transparentes y basados en calidad académica. De alguna manera yo suponía constantemente que ellos tendrían la idea de que en México generalmente no se hace así y repetí, de muchas maneras, que ello sería indispensable para nosotros. Insistí que precisamente por ello es que nosotros buscamos que el mismo KEK estuviese involucrado en el proceso de contratación: eso lo legitimaría. En realidad no estoy seguro de cuál haya sido la idea previa, en caso de haber existido, que ellos tuvieran sobre México y sus procesos académicos, pero con la confianza del “sake,” uno de ellos se animó a decirme “me parece que no eres un mexicano típico.” No supe qué responder. No me gustó el comentario y al mismo tiempo creo que sentí que lo entendía. El percibió la ambigüedad en mi reacción (corporal, porque no pude decirle nada de inmediato) y se disculpó. Le dije que no se preocupara.

Ateneo-Grand-Splendid-Modern-BookstoreOtro ejemplo “simpático” consistió en mi descripción de Colima. Insistí varias veces en que es un lugar pequeño, geográfica y poblacionalmente, y que eso es bueno. Ante mi insistencia sobre el tema, uno de ellos me pregunta, con cierta preocupación, “pero, ¿qué tan pequeño es? Le contesto que la capital, de manera conurbada con otro municipio, tiene alrededor de 300,000 habitantes, a lo que inmediatamente comentó, aseverando: “¡Ah!, entonces no es tan pequeña; con esa población seguro cuenta con buenas librerías.”


¿Se puede?

julio 17, 2014

Existen áreas de investigación científica que requieren de una infraestructura física y tecnológica tan grande que es imposible tenerla en una universidad o incluso difícilmente en un solo país. Los países que sí la tienen, por lo general, lo logran en colaboración con otros: los laboratorios se construyen en un cierto lugar, pero son varios los países que aportan recursos para la construcción y/o el equipamiento.

Comúnmente esos centros de investigación requieren de múltiples equipos con muchas componentes diferentes, la mayoría de las cuales tienen que ser creadas por los mismos investigadores (no se pueden comprar, no existen). Un grupo en alguna universidad de algún país puede desarrollar un proyecto, financiado por su propio país, para crear uno de los componentes necesario, llevarlo al laboratorio e instalarlo. Otros grupos harán lo propio con otros dispositivos y así, una vez que todo el equipamiento esté completo y funcionando, llega la época de experimentación. Investigadores de diferentes lugares del mundo utilizarán el laboratorio para obtener información sobre sus preguntas y proyectos específicos. Participarán todos ellos compartiendo y discutiendo los resultados y hallazgos.

La vida promedio de dicho tipo de colaboraciones va de las dos a las tres décadas, comenzando desde el diseño y construcción de los equipos hasta la obtención de datos y su posterior análisis. Se trata de proyectos de ciencia básica fundamental que sirven de base para todo lo demás.

Como podremos imaginar, la organización y funcionamiento de dichas empresas requiere no solo de la infraestructura física (laboratorios y dinero), sino también de una infraestructura administrativa sofisticada y robusta. Investigadores y estudiantes deben tener la posibilidad de trasladarse y pasar temporadas largas en instituciones distintas a las suyas, el equipo generado y/o adquirido en un país terminará funcionando en otro, la planificación de los proyectos debe contemplar fases de avance intermedias pero debe ser pensado y organizado a muy largo plazo, etc. Como también creo podremos imaginar, nada de ello es común en nuestro sistema.

En nuestro país no existe un laboratorio o centro de esas características. Para aquellas personas que hayan seguido esta columna no les resultará sorprendente esta situación: simplemente no existen condiciones que permitan si quiera imaginar la posibilidad de crear una empresa de esa magnitud en este momento. Lo que sí hay, aunque en una escala muy pequeña y marginal, es la participación de algunos grupos en proyectos grandes realizados en otros países, pero aún en esos casos, la participación ha sido muy modesta y restringida a pocos aspectos del proceso general de experimentación. Hace falta más.

Es importante aclarar lo siguiente: en nuestro país sí existen laboratorios de buen nivel en donde se realizan experimentos importantes en diferentes áreas del conocimiento. A lo que me refiero en este momento es al tipo de laboratorios y experimentos de gran envergadura que requieren la colaboración internacional que describo arriba.

IMG_8586En la Universidad de Colima estamos intentando participar con la creación de un grupo de investigación que se involucre directamente en una colaboración internacional en uno de esos laboratorios. La idea es que sea un grupo formado por investigadores que puedan incorporarse a alguno de los proyectos en fase de desarrollo de un laboratorio internacional y pueda mantener una relación de largo plazo.

Desde hace poco más de un año hemos estado trabajando con el laboratorio japonés KEK, ubicado en Tsukuba Japón, para ver la forma de crear, en conjunto, un grupo de la universidad que pueda adherirse a uno de sus proyectos. Ese laboratorio, en colaboración con el acelerador J-PARC ubicado en Tokai, cuenta con una impresionante infraestructura de aceleradores que permite llevar a cabo experimentos en diversas áreas del conocimiento: física de partículas, nuclear, de materiales, médica, de aceleradores, biofísica, entre otras. El trabajo y las negociaciones llevadas a cabo lograron que en enero de este año se firmara un convenio entre la universidad y el KEK para la creación de un grupo de 4 investigadores dentro de los próximos tres años. Debido a eso, y para organizar las actividades relacionadas a la creación del grupo, recientemente visité el KEK para organizar los procesos de contratación y de organización para que el proyecto avance.

Se requerirán muchas cosas para que el proyecto se concrete. Representa una forma muy diferente de hacer las cosas que seguramente requerirá de cambios e ideas distintas para resolver los problemas que surjan. Se requerirá conseguir recursos por parte de agencias financiadoras de la actividad científica en el país, se requerirá conseguir recursos humanos del mejor nivel posible, se requerirá brindar condiciones óptimas para el trabajo de investigación y docencia, se requerirá planear proyectos a mediano y largo plazo, se requerirá continuidad y mucha calidad. Lo importante es que todo lo que se requiere es posible. No será fácil, pero estoy seguro de que todo el esfuerzo que tengamos que hacer valdrá la pena al final. Por el momento ya estamos definiendo el primer paso para la incorporación de las primeras dos personas. Los mantendré informados.

 


Radiación de cuerpo negro (parte 1)

mayo 26, 2014

¿Cómo sabemos de qué están hechas las estrellas? Durante muchos años los seres humanos observaron el cielo con sus planetas y estrellas. Durante muchos años eso era lo único que podían ver. Sus observaciones permitieron encontrar patrones en los movimientos celestes y eso ayudó a que eventualmente entendieran el movimiento de nuestro planeta en el sistema solar. Esas observaciones ayudaron a Kepler a describir el movimiento de Marte (y de los otros planetas) con una órbita elíptica en términos de las famosas leyes de Kepler. Esas observaciones, y las leyes de Kepler, ayudaron a confirmar el poder y la utilidad de las leyes de la dinámica, así como de la teoría de la gravedad, ambas de Newton. Gracias en gran medida a esas observaciones nació la ciencia.

Aparte de los movimientos se observaban otras dos cosas en las estrellas: su brillo y su color. Es decir, se tenía una descripción de qué tan brillante con respecto a, digamos el sol, eran las estrellas que se podían ver, y luego se decía que algunas se ven rojas, otras azules, etcétera. Pero eso era todo. No se sabía nada más acerca de ellas. Ni de sus orígenes, ni sus diferencias, ni de qué eran en realidad. No siempre fue claro que el sol es una estrella, por ejemplo.

Hot_metalworkPasaron siglos y a principios del siglo XX la física estaba metida en tratar de entender algunos fenómenos que parecían contradecir las teorías existentes en esos días. Uno de esos fenómenos/problemitas consistía en describir la radiación (luz) que emiten los cuerpos calientes. Es probable que alguna vez hayas calentado (o visto a alguien hacerlo) un trozo de carbón o de metal. Seguramente habrás notado que conforme el carbón se calienta éste cambia de color (y lo mismo para el metal).

La física describe la radiación – la emisión y absorción de ondas electromagnéticas (luz) – a través de la teoría electromagnética, formulada por Maxwell en el siglo XIX. Por lo tanto los físicos de principios del siglo XX deberían de poder explicar por qué y cómo cambian los colores del carbón conforme se calienta.

Para cuantificar el fenómeno de manera precisa lo que se hace es lo siguiente: Se toma un objeto negro (negro significa que no emite – o casi no emite – radiación) con una cavidad interna y se le hace un orificio. Se cubre el orificio de tal manera que nada (radiación) puede salir. Se le coloca en un horno y se le transmite calor hasta que adquiera una temperatura determinada (hasta que esté en “equilibrio térmico”). Una vez logrado esto, se destapa el orificio y se deja que salga la radiación, la cual es recibida por un espectrómetro que identifica la intensidad de la radiación para un cierto rango de frecuencias, en otras palabras, el espectrómetro es un aparato, que ya existía en esa época, que nos dice cuanta luz (intensidad) se recibe de cada color (frecuencia). Se registran los datos en una gráfica en la que el eje horizontal corresponde a la frecuencia y el eje vertical a la cantidad de luz recibida. Esto fue el experimento. Lo recabado es lo que sucede, independientemente de si lo entendemos o no: es lo que es.

¿Qué se observa? Se obtiene que casi no hay radiación para frecuencias muy bajas. Conforme la frecuencia va incrementando, lo hace también la intensidad hasta llegar a una frecuencia particular (característica del material) en la que la intensidad llega a un máximo – el color que vemos si es visible. Posteriormente, conforme la frecuencia sigue avanzando, la intensidad comienza a disminuir rápidamente hasta llegar a cero para frecuencias muy altas. La forma precisa de la variación de la intensidad en función de la frecuencia es lo que la teoría debe de proveer.

UltravioletCatastrophe02¿Qué nos provee la teoría? Utilizando el electromagnetismo y las ideas de la época acerca de la materia (la teoría), tratamos de predecir/reproducir, según sea el caso, los resultados obtenidos por el experimento: predecimos si aún no conocemos los resultados, reproducimos si ya los conocemos. Los físicos de la época hicieron ambas cosas (experimento y cálculo). Al finalizar los cálculos matemáticos comparamos (compararon) y ¡oh sorpresa! No le damos ni cerquita. La teoría electromagnética predice que la cantidad de luz emitida debe crecer conforme crece la frecuencia ¡de manera indefinida!, ¡para siempre! – entre más frecuencia, más intensidad. De hecho, tomando los resultados matemáticos “al chile”, se llega a la conclusión de que si pudiéramos medir frecuencias infinitamente grandes, la radiación emitida sería infinita. Obviamente una tontería. El experimento muestra algo distinto, por supuesto, y la teoría queda en ridículo.

El problema, llamado catástrofe ultravioleta, era importante. Efectivamente invalidaba las ideas sobre la materia y posiblemente aspectos del electromagnetismo, que sin embargo, era una teoría que funcionaba maravillosamente para todo lo demás. Era una de las teorías más comprobadas y consistentes que se habían logrado realizar. Entonces pues, un verdadero desastre.

Planck(young)No hay mejor época para dedicarse a la ciencia que cuando hay crisis y “desastres” como los que acabamos de describir. Max Planck, físico alemán, fue quien empezó a resolver el desastre. Propuso la “cuantización” de la energía para poder explicar los resultados experimentales. Importante señalar que la solución utiliza la teoría de Maxwell ¡intacta! El electromagnetismo no era el problema, aparentemente. Se empezaba a gestar la mecánica cuántica.


¿Vocación? ¿En serio?

febrero 11, 2014

Me encuentro en el auditorio de un bachillerato de Colima. Ante mí tengo 60 estudiantes esperando que inicie la charla. La mayoría ni idea tiene de qué tratará ni de por qué está ahí. Los veo y les digo: “por favor levante la mano quien quiera estudiar una carrera universitaria.” La mayoría levanta la mano. Les vuelvo a decir “por favor levante la mano quien sepa qué va a estudiar.” Casi todos vuelven a levantar. Luego, después de observarlos unos segundos, los reto: “les apuesto lo que quieran a que sé mejor que ustedes por qué quieren estudiar eso que piensan querer estudiar.” Resultado: silencio, a veces expresiones de “sí, cómo no.” Miradas de incredulidad y algunas de indiferencia.

136Continúo: “por favor levante la mano quien conozca (en persona) a alguien que quiera dedicarse o que ya se dedique a la medicina.” Todos levantan la mano. Todos conocen al menos a un médico. Continúo: “lo mismo pero para abogado.” Todos levantan la mano. “¿A alguien que quiera estudiar o se dedique a la psicología?” Todos. “¿Pedagogía?” Todos. “¿Arquitectura?” Casi todos. “¿Ingeniería Civil?” Todos. ¿Astronomía? Ni una sola manita levantada. Luego sigo con “¿Matemáticas?” y de pronto quieren levantar la mano pero los interrumpo y les aclaro: “y no me refiero a maestro de matemáticas, sino a un matemático o una matemática.” Ninguna mano (eso si, un poco de confusión ya que si no me refiero a un maestro de matemáticas, entonces ¿a qué?). Desde luego que en cada una de las preguntas les pedí que se fijaran cuántas personas habían levantado la mano. Después del contraste tan evidente concluyo: “¡precisamente por eso es que ustedes quieren estudiar lo que dicen querer estudiar!” Caras atentas y pensativas (bueno, algunas, otras simplemente me ven como diciendo ¿y este tipo de qué habla?).

2418deabe4009eb47214305df39b2967Pocos conocemos científicos. Es muy probable que no tengamos familiares que se dediquen a la ciencia. Difícilmente alguna de nuestras vecinas se dedica a la astronomía. Podría casi apostar que no nos hemos topado en el súper con un cosmólogo y que si lo hicimos, ni lo sospechamos. No es para nada sorprendente que cuando andemos de compras veamos a algún conocido que es médico. Tampoco nos sorprenderá conocer a alguna persona nueva en el jardín del pueblo y que al empezar a platicar nos enteremos que es psicóloga. Ninguna sorpresa. Sin embargo, si por accidente un día conocemos una chica en una tienda de helados y nos dice que se dedica a la física nuclear, probablemente pensaremos que está loca y que no es cierto. O si le creemos, será una experiencia muy extraña que no pasa frecuentemente. ¿Qué es un científico? ¿A qué se dedica?

Tratando de responder aunque sea de manera superficial estas preguntas, a veces hago el siguiente ejercicio: pregunto “¿cuál es la circunferencia de un círculo?” Casi nadie sabe. A pesar de ser un conocimiento que se adquiere en primaria y que estoy hablando con chicos de prepa, casi nunca nadie lo sabe (si les pido que me den el nombre de tres escritores mexicanos vivos o muertos, o si lo extiendo a latinoamericanos, tampoco lo saben). Bien, como nadie responde a esa pregunta hago otra: “¿cuál es el área de un círculo?” Y de pronto, un número significativo de estudiantes dicen, al unísono: “pi por radio al cuadrado.” Es interesante que esa fórmula si la recuerden. En realidad no la entienden, ni saben muy bien qué significa, pero por alguna razón “suena bien.” Más allá de comprender y de asimilar el significado de dicha expresión, el “sonidito” se nos ha quedado grabado a la mayoría. Es interesante.

Sigo y pregunto que desde cuándo sabemos eso, es decir, desde cuándo los seres humanos sabemos eso. La mayoría no contesta pero no falta que alguien diga que desde hace miles de años, con los griegos. Cuando llegamos a este punto les pido que viajemos en el tiempo. Que todos juntos nos traslademos al pasado y lleguemos a Grecia. Es más, ya que hasta podemos viajar en el tiempo, decidimos llegar a nuestro destino un día tal que nadie sabía aún que el área del círculo era pi por radio al cuadrado. Ningún cerebro humano que haya existido hasta ese momento tenía ese conocimiento.

funny_this_is_what_a_scientist_looks_like_science_tshirtYa establecidos en la playa y con una fogata esperando que caiga la noche, notamos a un grupo de personas (griegos que andaban por ahí en sus “batas”) discutiendo apasionadamente. Están dibujando figuras en la arena y alegan acaloradamente. Sin violencia, pero con pasión. Los ignoramos por el momento. Cae finalmente la noche y después de tan singular viaje estamos algo cansados. Rendidos nos entregamos al sueño. Apenas amanece cuando unos gritos de emoción nos terminan de despertar. Resulta que los tipos que vimos discutir la noche anterior le habían seguido toda la madrugada y al parecer, mientras descansábamos, habían descubierto que el área del círculo era pi por radio al cuadrado. Estaban eufóricos y nos explicaban. De hecho, fueron los primeros seres humanos en tener esa información registrada en sus cerebros y ahora sería posible transmitirla. Regresamos al presente y mañana en las noticias nos dicen que hoy, mientras descansamos del viaje de regreso, alguien descubrió algo nuevo que nadie sabía. Esas personas son científicos.

¿Para qué sirve lo que estudian y descubren? ¿Para que sirve saber el área de un círculo? ¿Qué les motivó estudiarlo? ¿Tenían en mente alguna utilidad antes de descubrirlo? Los invito a que aporten sus respuestas. Ya saben dónde encontrarme.


Radiación de cuerpo negro (parte 1)

febrero 2, 2014

¿Cómo sabemos de qué están hechas las estrellas? Durante muchos años los seres humanos observaron el cielo con sus planetas y estrellas. Durante muchos años eso era lo único que podían ver. Sus observaciones permitieron encontrar patrones en los movimientos celestes y eso ayudó a que eventualmente entendieran el movimiento de nuestro planeta en el sistema solar. Esas observaciones ayudaron a Kepler a describir el movimiento de Marte (y de los otros planetas) con una órbita elíptica en términos de las famosas leyes de Kepler. Esas observaciones, y las leyes de Kepler, ayudaron a confirmar el poder y la utilidad de las leyes de la dinámica, así como de la teoría de la gravedad, ambas de Newton. Gracias en gran medida a esas observaciones nació la ciencia.

Aparte de los movimientos se observaban otras dos cosas en las estrellas: su brillo y su color. Es decir, se tenía una descripción de qué tan brillante con respecto a, digamos el sol, eran las estrellas que se podían ver, y luego se decía que algunas se ven rojas, otras azules, etcétera. Pero eso era todo. No se sabía nada más acerca de ellas. Ni de sus orígenes, ni sus diferencias, ni de qué eran en realidad. No siempre fue claro que el sol es una estrella, por ejemplo.

hot_metalPasaron siglos y a principios del siglo XX la física estaba metida en tratar de entender algunos fenómenos que parecían contradecir las teorías existentes en esos días. Uno de esos fenómenos/problemitas consistía en describir la radiación (luz) que emiten los cuerpos calientes. Es probable que alguna vez hayas calentado (o visto a alguien hacerlo) un trozo de carbón o de metal. Seguramente habrás notado que conforme el carbón se calienta éste cambia de color (y lo mismo para el metal).

La física describe la radiación – la emisión y absorción de ondas electromagnéticas (luz) – a través de la teoría electromagnética, formulada por Maxwell en el siglo XIX. Por lo tanto los físicos de principios del siglo XX deberían de poder explicar por qué y cómo cambian los colores del carbón conforme se calienta.

Para cuantificar el fenómeno de manera precisa lo que se hace es lo siguiente: Se toma un objeto negro (negro significa que no emite – o casi no emite – radiación) con una cavidad interna y se le hace un orificio. Se cubre el orificio de tal manera que nada (radiación) puede salir. Se le coloca en un horno y se le transmite calor hasta que adquiera una temperatura determinada (hasta que esté en “equilibrio térmico”). Una vez logrado esto, se destapa el orificio y se deja que salga la radiación, la cual es recibida por un espectrómetro que identifica la intensidad de la radiación para un cierto rango de frecuencias, en otras palabras, el espectrómetro es un aparato, que ya existía en esa época, que nos dice cuanta luz (intensidad) se recibe de cada color (frecuencia). Se registran los datos en una gráfica en la que el eje horizontal corresponde a la frecuencia y el eje vertical a la cantidad de luz recibida. Esto fue el experimento. Lo recabado es lo que sucede, independientemente de si lo entendemos o no: es lo que es.

Gráfico_de_un_cuerpo_negro¿Qué se observa? Se obtiene que casi no hay radiación para frecuencias muy bajas. Conforme la frecuencia va incrementando, lo hace también la intensidad hasta llegar a una frecuencia particular (característica del material) en la que la intensidad llega a un máximo – el color que vemos si es visible. Posteriormente, conforme la frecuencia sigue avanzando, la intensidad comienza a disminuir rápidamente hasta llegar a cero para frecuencias muy altas. La forma precisa de la variación de la intensidad en función de la frecuencia es lo que la teoría debe de proveer.

¿Qué nos provee la teoría? Utilizando el electromagnetismo y las ideas de la época acerca de la materia (la teoría), tratamos de predecir/reproducir, según sea el caso, los resultados obtenidos por el experimento: predecimos si aún no conocemos los resultados, reproducimos si ya los conocemos. Los físicos de la época hicieron ambas cosas (experimento y cálculo). Al finalizar los cálculos matemáticos comparamos (compararon) y ¡oh sorpresa! No le damos ni cerquita. La teoría electromagnética predice que la cantidad de luz emitida debe crecer conforme crece la frecuencia ¡de manera indefinida!, ¡para siempre! – entre más frecuencia, más intensidad. De hecho, tomando los resultados matemáticos “al chile”, se llega a la conclusión de que si pudiéramos medir frecuencias infinitamente grandes, la radiación emitida sería infinita. Obviamente una tontería. El experimento muestra algo distinto, por supuesto, y la teoría queda en ridículo.

El problema, llamado catástrofe ultravioleta, era importante. Efectivamente invalidaba las ideas sobre la materia y posiblemente aspectos del electromagnetismo, que sin embargo, era una teoría que funcionaba maravillosamente para todo lo demás. Era una de las teorías más comprobadas y consistentes que se habían logrado realizar. Entonces pues, un verdadero desastre.

planckNo hay mejor época para dedicarse a la ciencia que cuando hay crisis y “desastres” como los que acabamos de describir. Max Planck, físico alemán, fue quien empezó a resolver el desastre. Propuso la “cuantización” de la energía para poder explicar los resultados experimentales. Importante señalar que la solución utiliza la teoría de Maxwell ¡intacta! El electromagnetismo no era el problema, aparentemente. Se empezaba a gestar la mecánica cuántica.


¿Relatividad?

enero 28, 2014

einstein-1894_approx-young-sizedSi avanzo 50 metros durante 10 segundos en dirección Oeste, decimos que llevo una “velocidad” de “5 metros por segundo.” En realidad deberíamos decir “5 metros entre segundo,” pero como que se acomoda mejor la lengua al decir “por.” Es más, para ser verdaderamente cuidadosos y precisos tendríamos que decir “5 metros entre segundo en dirección Oeste con respecto al árbol que se encuentra enfrente de mi casa,” en otras palabras, para hablar de “velocidad” se requiere lo siguiente: unidades –  en qué se mide la velocidad, que en nuestro ejemplo son “metros entre segundo” (podrían ser kilómetros entre hora, pulgadas entre minuto, etc.). Se requiere también especificar la dirección en la que se mueve y esto conlleva a tener que especificar un “sistema de referencia,” en nuestro caso el árbol enfrente de mi casa.

Claro que cuando no es importante ser tan precisos, solamente decimos – ayer regresé por carretera y venía como a 140 – todos entenderemos que se refiere a kilómetros entre hora (y diremos kilómetros por hora) y que la dirección era hacia nosotros, es decir hacia Colima. Para no hacernos bolas ni aburrirnos, utilizaremos esa descripción menos precisa en lo que resta de este escrito.

Si voy en un coche a 50 km/hr y me dirijo derechito al árbol que se encuentra plantado enfrente de mi casa, y no freno, seguramente tendré algunos problemas. Ignoremos las obvias consecuencias de dicho encontronazo y pensemos en lo siguiente: desde la perspectiva de un pasajero de nuestro coche, el árbol se acerca a 50 km/hr, en otras palabras es posible verlo de esa manera. Si le pregunto a un insecto parado en árbol, el insecto también puede decir que el coche va a 50 hacia él o que el árbol (junto con él) va a 50 hacia el coche. Es equivalente.

Un choque más emocionante: si en lugar de que nuestro coche vaya en una trayectoria hacia un árbol va hacia otro coche, que a su se mueve en la misma dirección, entonces la cosa es más emocionante (y peligrosa). Supongamos por ejemplo que con respecto a la banqueta nuestro coche va a 50 km/hr hacia la derecha y que el coche de nuestros desafortunados amigos va a 50 km/hr pero rumbo a la izquierda. Repitiendo el ejercicio de arriba, si deseamos podemos decir que el coche enemigo viene hacia nosotros a 100 km/hr y viceversa. La velocidad es precisamente relativa y depende del sistema o marco de referencia con respecto al cual se mida. Así, si yo mido la velocidad del coche enemigo con respecto al volante de mi coche, aquel se acerca hacia mi volante con una velocidad de 100 km/hr. Si la medimos con respecto a la banqueta, uno lleva 50 a la derecha y el otro 50 a la izquierda. Creo que la mayoría de nosotros estaremos de acuerdo con lo que acabo de decir, y es además es efectivamente correcto, bueno, a medias.

Resulta que hace un poco más de 100 años Albert Einstein llegó a la conclusión de que lo que acabamos de describir es verdad, o casi verdad, solo cuando las velocidades involucradas son pequeñas con respecto a la velocidad de la luz, la cual es de aproximadamente 300,000 km/seg. Una vez que las velocidades sean comparables a la de la luz, encontraremos fenómenos físicos muy diferentes a lo que nuestra intuición y experiencia nos dice. Claro está que en nuestra vida cotidiana esos efectos no son apreciables ya que nos movemos con velocidades extremadamente pequeñas (comparadas con la de la luz), sin embargo existen muchos fenómenos naturales, incluyendo algunos que nosotros generamos, en los que si se manifiestan los cambios.

Para describir un poco de qué se trata consideremos lo siguiente. Como vimos arriba, la velocidad está relacionada con un desplazamiento espacial (avanzar una cierta distancia) realizado durante un cierto intervalo de tiempo. Si voy a 10 m/s quiere decir que me desplacé de un lugar a otro, separado por 10 metros, y que lo hice durante un segundo. Si efectivamente confirmo ese enunciado quiere decir que pude medir (o alguien lo hizo por mi) una distancia (10 metros) y un intervalo temporal (un segundo). Pues bien, lo que Einstein descubrió es que la velocidad de la luz es siempre la misma y es independiente del estado de movimiento de quien la observe. ¿Qué quiere decir esto? Quiere decir que si yo enciendo una luz en cierta dirección, un observador registrará que la luz llega a 300,000 km/seg independientemente de si yo me muevo o no. No importa si yo voy en un coche que viaje a la mitad de la velocidad de la luz y luego le “aviente” la luz de una linterna, el observador no verá la luz a 450,000 km/seg, la verá exactamente a 300,000 km/seg. De hecho, si en el ejemplo de arriba los coches fueran a 200,000 km/seg (comparable a la de la luz) en lugar de 50 km/hr, no determinarían 400,000, sino algo menor a 300,000.

tdgraphformula1¿Cómo es posible? ¿Qué sucede que haga esto posible? La consecuencia de la constancia de la velocidad de la luz es que cuando viajamos a velocidades tan grandes, el espacio y el tiempo se distorsionan de tal forma que la luz, independientemente de cómo nos movamos, mantiene su velocidad. A esto se le conoce como la relatividad especial que descubrió Albert Einstein, y al contrario de lo que comúnmente se le atribuye (de que todo es relativo y no podemos determinar nada), la relatividad especial está fundamentada en dos postulados bastante no-relativos: i) Las leyes de la naturaleza son iguales en todos lados y ii) la velocidad de la luz es constante e independiente del sistema de referencia.


¿Para qué sirven sus publicaciones? ¿Por qué mejor no se ponen a hacer algo que «de verdad» sirva?

enero 1, 2014

En el intento por describir  la importancia de la ciencia básica y su indispensable necesidad de ser financiada, la mayoría hemos escuchado y mencionado varios argumentos. Es típico decir que la investigación básica (teórica) ha generado una cantidad inmensa de conocimiento, que ha permitido inventar y generar tecnologías que utilizamos diariamente casi sin darnos cuenta. Esto no representa de ninguna manera la única aportación de la ciencia básica, pero siempre se menciona – y con razón: sin ciencia básica, no habría nada.

frase-el-cientifico-no-estudia-la-naturaleza-por-la-utilidad-que-le-pueda-reportar-la-estudia-por-el-henri-poincare-126291Algo que se nos olvida mencionar (a muchos), es que todos esos avances y repercusiones en el mundo tecnológico, han sucedido gracias a una sólida y organizada estructura de ciencia experimental básica y aplicada. Estructura que vive a la par de la ciencia básica teórica y que goza de la misma dignidad (si no es que más) y consideración. La ciencia de primer nivel se ha hecho en lugares donde existen las dos estructuras, ciencia teórica y ciencia experimental (por teóricca no me refiero a cuestiones de opinión ni de discurso, en la ciencia la palabra “teoría” significa el entendimiento comprobado y sustentado por medio de evidencias, que permite explicar y predecir).

Es fácil decirle a las autoridades que el sistema de posicionamiento global (GPS) no funcionaría sin la Relatividad General. Esto es una verdad absoluta, no se miente. Sin embargo dicho así no tiene ningún sentido. Para poder generarlo fueron necesarias tanto la Relatividad General como una enorme cantidad de desarrollo tecnológico, que va desde poder poner satélites en órbita, generar la electrónica adecuada, desarrollar materiales para los dispositivos, entro otros. Es fácil también decir que una gran cantidad de aparatitos electrónicos funcionan gracias a que se desarrolló la mecánica cuántica. Por supuesto que es verdad, y al igual que el GPS, para que vieran la luz, se requirió de investigación experimental – básica y aplicada – de primer orden y con muchas vertientes.

Creo que debemos de ser más honestos y cuidadosos cuando tratemos de explicar y justificar (porque además es nuestra obligación) la necesidad de que un país como el nuestro apoye la ciencia básica, teórica y experimental, lo cual estoy completamente convencido de que es imperante y urgente (bueno, si queremos mejorar, si no, no es necesario). Tenemos que tener cuidado cuando ponemos esos ejemplos simplones, ya que alguien mínimamente interesado podría preguntarnos qué contribuciones de ciencia básica hecha en México en los últimos 50 años, por ejemplo en física, han repercutido en algún aparatito.

Me parece conveniente que pensáramos cuidadosamente en emitir una explicación más fiel a nuestra realidad y que a la vez, pusiéramos un empeño decidido en impulsar, a través de todos los medios a nuestro alcance, el desarrollo de una ciencia más completa. Una ciencia que incluya todos los aspectos y que apoye todas las vertientes, de manera organizada y evaluando su relevancia de manera cuidadosa y honesta.

pasteurEn nuestro país existe un poco de ciencia básica teórica (poca y mal financiada, pero existe), muuuy poco de ciencia aplicada experimental (sin apoyo real ni decidido, casi siempre a medias y con exigencias de “impacto” inmediato y “visible”), pero casi nada de ciencia básica experimental. Para darnos una idea de lo que nos perdemos: es ahí, en la ciencia básica experimental, donde “se inventan” los nuevos aparatos y tecnologías que posteriormente permitirán a las demás disciplinas construir sus laboratorios. Antes de tener microscopios electrónicos, computadoras, equipos de resonancia magnética, etc.  (es decir, todo lo que se puede comprar ya construido), alguien tuvo que inventarlos. Alguien tuvo que necesitarlos. ¿Para qué? Seguramente para tratar de entender las propiedades más basicas de la materia, para investigar qué tipo de cosas nos llegan desde el Sol, para intentar “ver” y “explorar” la naturaleza donde nunca nadie lo haya hecho. Para ese tipo de cosas se ha tenido que inventar una gran cantidad de tecnología. Con lo que se descubre se entiende mejor a la naturaleza y eso nos permite a la vez seguir mejorando los inventos. Luego nos damos cuenta de que algunas de esas tecnologías pueden usarse con otros fines (estudiar la sangre, mejorar el concreto, los alimentos, etc.). Es un proceso rico y complejo en el que participan muchos actores. Mientras no contemos con una infraestructura robusta, que incorpore todos esos actores, será difícil contribuir de manera significativa como país.

También por eso es necesario pensar un poquito (ya con esta información) antes de decirle a los pocos investigadores de nuestro país: “Deberían ponerse a trabajar en proyectos que “de verdad” sirvan. Proyectos que “resuelvan” los problemas actuales, y no anden con sus abstracciones raras.” Como hemos visto, no se trata de que un científico decida o no dedicarse a tal o cual problema. Para tener un impacto “visible” se requiere de una infraestructura con todos los elementos, desde el más básico hasta el más aplicado. La razón por la cual en este momento tenemos un poco más desarrollada la ciencia básica teórica tiene una explicación muy sencilla: es la más barata. Es la que sí puede sobrevivir a pesar de politicas cambiantes y burocracias empedernidas. Es la que podemos hacer a pesar de la situación en la que nos encontramos. Necesitamos cambiar esa situación ya.