Radiación de cuerpo negro (parte 1)

febrero 2, 2014

¿Cómo sabemos de qué están hechas las estrellas? Durante muchos años los seres humanos observaron el cielo con sus planetas y estrellas. Durante muchos años eso era lo único que podían ver. Sus observaciones permitieron encontrar patrones en los movimientos celestes y eso ayudó a que eventualmente entendieran el movimiento de nuestro planeta en el sistema solar. Esas observaciones ayudaron a Kepler a describir el movimiento de Marte (y de los otros planetas) con una órbita elíptica en términos de las famosas leyes de Kepler. Esas observaciones, y las leyes de Kepler, ayudaron a confirmar el poder y la utilidad de las leyes de la dinámica, así como de la teoría de la gravedad, ambas de Newton. Gracias en gran medida a esas observaciones nació la ciencia.

Aparte de los movimientos se observaban otras dos cosas en las estrellas: su brillo y su color. Es decir, se tenía una descripción de qué tan brillante con respecto a, digamos el sol, eran las estrellas que se podían ver, y luego se decía que algunas se ven rojas, otras azules, etcétera. Pero eso era todo. No se sabía nada más acerca de ellas. Ni de sus orígenes, ni sus diferencias, ni de qué eran en realidad. No siempre fue claro que el sol es una estrella, por ejemplo.

hot_metalPasaron siglos y a principios del siglo XX la física estaba metida en tratar de entender algunos fenómenos que parecían contradecir las teorías existentes en esos días. Uno de esos fenómenos/problemitas consistía en describir la radiación (luz) que emiten los cuerpos calientes. Es probable que alguna vez hayas calentado (o visto a alguien hacerlo) un trozo de carbón o de metal. Seguramente habrás notado que conforme el carbón se calienta éste cambia de color (y lo mismo para el metal).

La física describe la radiación – la emisión y absorción de ondas electromagnéticas (luz) – a través de la teoría electromagnética, formulada por Maxwell en el siglo XIX. Por lo tanto los físicos de principios del siglo XX deberían de poder explicar por qué y cómo cambian los colores del carbón conforme se calienta.

Para cuantificar el fenómeno de manera precisa lo que se hace es lo siguiente: Se toma un objeto negro (negro significa que no emite – o casi no emite – radiación) con una cavidad interna y se le hace un orificio. Se cubre el orificio de tal manera que nada (radiación) puede salir. Se le coloca en un horno y se le transmite calor hasta que adquiera una temperatura determinada (hasta que esté en “equilibrio térmico”). Una vez logrado esto, se destapa el orificio y se deja que salga la radiación, la cual es recibida por un espectrómetro que identifica la intensidad de la radiación para un cierto rango de frecuencias, en otras palabras, el espectrómetro es un aparato, que ya existía en esa época, que nos dice cuanta luz (intensidad) se recibe de cada color (frecuencia). Se registran los datos en una gráfica en la que el eje horizontal corresponde a la frecuencia y el eje vertical a la cantidad de luz recibida. Esto fue el experimento. Lo recabado es lo que sucede, independientemente de si lo entendemos o no: es lo que es.

Gráfico_de_un_cuerpo_negro¿Qué se observa? Se obtiene que casi no hay radiación para frecuencias muy bajas. Conforme la frecuencia va incrementando, lo hace también la intensidad hasta llegar a una frecuencia particular (característica del material) en la que la intensidad llega a un máximo – el color que vemos si es visible. Posteriormente, conforme la frecuencia sigue avanzando, la intensidad comienza a disminuir rápidamente hasta llegar a cero para frecuencias muy altas. La forma precisa de la variación de la intensidad en función de la frecuencia es lo que la teoría debe de proveer.

¿Qué nos provee la teoría? Utilizando el electromagnetismo y las ideas de la época acerca de la materia (la teoría), tratamos de predecir/reproducir, según sea el caso, los resultados obtenidos por el experimento: predecimos si aún no conocemos los resultados, reproducimos si ya los conocemos. Los físicos de la época hicieron ambas cosas (experimento y cálculo). Al finalizar los cálculos matemáticos comparamos (compararon) y ¡oh sorpresa! No le damos ni cerquita. La teoría electromagnética predice que la cantidad de luz emitida debe crecer conforme crece la frecuencia ¡de manera indefinida!, ¡para siempre! – entre más frecuencia, más intensidad. De hecho, tomando los resultados matemáticos “al chile”, se llega a la conclusión de que si pudiéramos medir frecuencias infinitamente grandes, la radiación emitida sería infinita. Obviamente una tontería. El experimento muestra algo distinto, por supuesto, y la teoría queda en ridículo.

El problema, llamado catástrofe ultravioleta, era importante. Efectivamente invalidaba las ideas sobre la materia y posiblemente aspectos del electromagnetismo, que sin embargo, era una teoría que funcionaba maravillosamente para todo lo demás. Era una de las teorías más comprobadas y consistentes que se habían logrado realizar. Entonces pues, un verdadero desastre.

planckNo hay mejor época para dedicarse a la ciencia que cuando hay crisis y “desastres” como los que acabamos de describir. Max Planck, físico alemán, fue quien empezó a resolver el desastre. Propuso la “cuantización” de la energía para poder explicar los resultados experimentales. Importante señalar que la solución utiliza la teoría de Maxwell ¡intacta! El electromagnetismo no era el problema, aparentemente. Se empezaba a gestar la mecánica cuántica.


¿Para qué sirven sus publicaciones? ¿Por qué mejor no se ponen a hacer algo que “de verdad” sirva?

enero 1, 2014

En el intento por describir  la importancia de la ciencia básica y su indispensable necesidad de ser financiada, la mayoría hemos escuchado y mencionado varios argumentos. Es típico decir que la investigación básica (teórica) ha generado una cantidad inmensa de conocimiento, que ha permitido inventar y generar tecnologías que utilizamos diariamente casi sin darnos cuenta. Esto no representa de ninguna manera la única aportación de la ciencia básica, pero siempre se menciona – y con razón: sin ciencia básica, no habría nada.

frase-el-cientifico-no-estudia-la-naturaleza-por-la-utilidad-que-le-pueda-reportar-la-estudia-por-el-henri-poincare-126291Algo que se nos olvida mencionar (a muchos), es que todos esos avances y repercusiones en el mundo tecnológico, han sucedido gracias a una sólida y organizada estructura de ciencia experimental básica y aplicada. Estructura que vive a la par de la ciencia básica teórica y que goza de la misma dignidad (si no es que más) y consideración. La ciencia de primer nivel se ha hecho en lugares donde existen las dos estructuras, ciencia teórica y ciencia experimental (por teóricca no me refiero a cuestiones de opinión ni de discurso, en la ciencia la palabra “teoría” significa el entendimiento comprobado y sustentado por medio de evidencias, que permite explicar y predecir).

Es fácil decirle a las autoridades que el sistema de posicionamiento global (GPS) no funcionaría sin la Relatividad General. Esto es una verdad absoluta, no se miente. Sin embargo dicho así no tiene ningún sentido. Para poder generarlo fueron necesarias tanto la Relatividad General como una enorme cantidad de desarrollo tecnológico, que va desde poder poner satélites en órbita, generar la electrónica adecuada, desarrollar materiales para los dispositivos, entro otros. Es fácil también decir que una gran cantidad de aparatitos electrónicos funcionan gracias a que se desarrolló la mecánica cuántica. Por supuesto que es verdad, y al igual que el GPS, para que vieran la luz, se requirió de investigación experimental – básica y aplicada – de primer orden y con muchas vertientes.

Creo que debemos de ser más honestos y cuidadosos cuando tratemos de explicar y justificar (porque además es nuestra obligación) la necesidad de que un país como el nuestro apoye la ciencia básica, teórica y experimental, lo cual estoy completamente convencido de que es imperante y urgente (bueno, si queremos mejorar, si no, no es necesario). Tenemos que tener cuidado cuando ponemos esos ejemplos simplones, ya que alguien mínimamente interesado podría preguntarnos qué contribuciones de ciencia básica hecha en México en los últimos 50 años, por ejemplo en física, han repercutido en algún aparatito.

Me parece conveniente que pensáramos cuidadosamente en emitir una explicación más fiel a nuestra realidad y que a la vez, pusiéramos un empeño decidido en impulsar, a través de todos los medios a nuestro alcance, el desarrollo de una ciencia más completa. Una ciencia que incluya todos los aspectos y que apoye todas las vertientes, de manera organizada y evaluando su relevancia de manera cuidadosa y honesta.

pasteurEn nuestro país existe un poco de ciencia básica teórica (poca y mal financiada, pero existe), muuuy poco de ciencia aplicada experimental (sin apoyo real ni decidido, casi siempre a medias y con exigencias de “impacto” inmediato y “visible”), pero casi nada de ciencia básica experimental. Para darnos una idea de lo que nos perdemos: es ahí, en la ciencia básica experimental, donde “se inventan” los nuevos aparatos y tecnologías que posteriormente permitirán a las demás disciplinas construir sus laboratorios. Antes de tener microscopios electrónicos, computadoras, equipos de resonancia magnética, etc.  (es decir, todo lo que se puede comprar ya construido), alguien tuvo que inventarlos. Alguien tuvo que necesitarlos. ¿Para qué? Seguramente para tratar de entender las propiedades más basicas de la materia, para investigar qué tipo de cosas nos llegan desde el Sol, para intentar “ver” y “explorar” la naturaleza donde nunca nadie lo haya hecho. Para ese tipo de cosas se ha tenido que inventar una gran cantidad de tecnología. Con lo que se descubre se entiende mejor a la naturaleza y eso nos permite a la vez seguir mejorando los inventos. Luego nos damos cuenta de que algunas de esas tecnologías pueden usarse con otros fines (estudiar la sangre, mejorar el concreto, los alimentos, etc.). Es un proceso rico y complejo en el que participan muchos actores. Mientras no contemos con una infraestructura robusta, que incorpore todos esos actores, será difícil contribuir de manera significativa como país.

También por eso es necesario pensar un poquito (ya con esta información) antes de decirle a los pocos investigadores de nuestro país: “Deberían ponerse a trabajar en proyectos que “de verdad” sirvan. Proyectos que “resuelvan” los problemas actuales, y no anden con sus abstracciones raras.” Como hemos visto, no se trata de que un científico decida o no dedicarse a tal o cual problema. Para tener un impacto “visible” se requiere de una infraestructura con todos los elementos, desde el más básico hasta el más aplicado. La razón por la cual en este momento tenemos un poco más desarrollada la ciencia básica teórica tiene una explicación muy sencilla: es la más barata. Es la que sí puede sobrevivir a pesar de politicas cambiantes y burocracias empedernidas. Es la que podemos hacer a pesar de la situación en la que nos encontramos. Necesitamos cambiar esa situación ya.


The NOvA Series | 1 Control Room

diciembre 25, 2013

INTRO

Una de las películas más taquilleras del verano 2013 fue Pacific Rim (Titanes del Pacífico) dirigida por el mexicano Guillermo del Toro.  Recreada en el futuro cercano  y para el gusto de algunos fanáticos -considero- se apega un poco a la trama de Neon Genesis Evangelion o de Mazinger Z. Básicamente la historia describe la lucha de la humanidad contra monstruos gigantes que quieren acabar con ella.

Las animaciones son geniales y verla en una IMax en 3D vale mucho la pena pero de ahí en más, la historia no tiene mucho que contar.

SSD-19060.DNG

Fancy Control Room

En una de las escenas se ve a Mako Mori discutir con el comandante Stacker Pentecost sobre su deseo de formar parte de la flotilla que buscara combatir a las iguanas gigantes (llamadas Kaijus). Es en esa parte donde podemos apreciar algo que es común en esta y un sin fín de muchas otras películas: un Centro de Operaciones de alta tecnología, lleno de gente enfrascada viendo monitores de computadoras, con múltiples botones y sensores de colores brillantes… y por supuesto, un gran mapa mundi o en su defecto, una enorme pantalla digital!

Pero, ¿existirán tales “centros de control” en la vida real? Si es así, ¿podrían pensar en alguno? ¿cómo lucen de verdad? ¿será que tendrán cámaras y monitores gigantes? ¿qué hace la gente ahí que los tiene tan “absortos” del mundo?

CONTROL ROOM

La actividad en el piso 12 del Wilson Hall en Fermilab ha ido en aumento últimamente. El número de veces que la campanilla del asensor suena a lo largo del día así lo demuestra.
Y es que desde que el beam entró en operaciones gran cantidad de científicos y técnicos pertenecientes a diversos experimentos de la Intensity Frontier entran y salen del Neutrino Control Room. El ir y venir de gente ocurre las 24h del día con ligeras interrupciones durante los fines de semana. Con el beam de protones en el Main Inyector se da por concluida la fase de actualizaciones y se inicia la etapa de colecta de datos. Datos que cuestan y definen muchas cosas.

NOvA Control Room

NOvA Control Room

Si bien el Neutrino Control Room (CR) de Fermilab no se ve tan futurista como el de Titanes del Pacífico, sí alberga una serie de experimentos pioneros en la física de neutrinos: MINOS+, MINERvA, MicroBOONe y NOvA.

En las siguientes líneas les comentaré un poco sobre mi experiencia en el CR de NOvA.

SHIFTERS

Las personas que activamente estan en el CR se les denomina shifters. Estar on shift es básicamente estar de guardia. El día se divide en tres guardias: Día (8:00am-4:00pm ), Tarde (4:00pm-12:00am) y Noche (12:00am-8:00am). Dentro sus múltiples responsabilidades, el shifter deberá:

  • Mantener la colecta actual de datos en todos y cada uno de los detectores en funcionamiento,
  • Reportar todo desperfecto que ponga en riesgo la colecta de datos y que este fuera del alcance del shifter a los expertos,
  • Mantener comunicacion constante con otros centros de Control (Acceleration Division, Ash River, etc) y
  • Reportar el historial de todas sus actividades en el diario electrónico (logbook) para futura referecias.

Cada institución perteneciente a la colaboración NOvA tiene como obligación cubrir cierto número de guardias. Esta en el reglamento. En promedio, cada persona cubre 3 guardias en 4 meses.

La mayoría de los novatos seguimos el Manual de Referencia con instrucciones básicas sobre qué hacer durante la guardia. Pero debido a la constante serie de actualizaciones tanto a los sistemas de monitoreo como a las configuraciones de hardware -esto es, más botones y más monitores- dicho manual es muchas veces, obsoleto. Soluciones temporales involucran notas a lápiz, tachaduras, rayones, información extra y hasta dibujos en los bordes y exteriores de dicho manual.

En el cambio de guardias, se a convertido en un saludo ya decir al novato ¡¡No rompas el detector!! Y es que lo peor que te pueda pasar estando en el CR es que todo se venga abajo y que ningún experto conteste el teléfono. Durante la pasada estación de lluvias por ejemplo, varias veces hubo apagones en los sistemas. Tales infortunios echaron por la borda horas de trabajo acumulado y retrasaron hasta por 3 días la colecta de datos, para el deleite de los cordinadores del experimento, DAQ experts y de los propios shifters.

Lo mejor que te puede pasar estando de guardia es que sólo te dediques a completar formas de Check-Out -decir que todo funciona OK para después postearlo en el diario- o ya de plano, si tienes suerte de campeón, observar una interacción neutrino-núcleo en la pantalla de eventos.

En los días de instalación y puesta en marcha de los primeros bloques del detector lejano (FarDet) en Ash River MN, el CR de Fermilab era un tremendo caos. Dado que -casi- ninguno de los sistemas de monitoreo funcionaba como debiera en aquella época, el shifter tenía sobre sus hombros la responsabilidad de mantener colectas de datos tan frágiles como un hilo de hielo. Eso y lidiar con el humor de tus superiores.

Los sistemas de monitoreo a los cuales el shifter tiene acceso y control en el CR son:

  • Run Control: Controla el inicio y fin la colecta de datos (Run). Si el detector fuera una cámara y el beam de neutrinos fuera la luz, RC sería el sistema que controla obturador y disparador.
  • Memory Viewer: Una vez que la foto es tomada, se debe almacenar en alguna parte. En ese complicado proceso de almacenamiento, MV monitorea la salud y estado de los dispositivos de memoria.
  • Online Monitoring: Sería la visualización de la foto en una pantalla CCD una vez que la foto es tomada. Brinda una primera imagen de partículas (como rayos cosmicos) y “ruido” a través del detector. También ayuda a visualizar si algunos componentes electrónicos estan o no funcionando correctamente.
  • Environmeltal Monitoring: Toma parte de las condiciones ambientales del detector, tales como humedad, temperatura ambiental y de sus componentes electrónicos.
  • Power Supply Monitoring: Permite llevar un registro de variables como voltajes y corrientes del sistema. Con ciertos privilegios, se puede mandar apagar de forma total o parcial el detector de manera remota. También se puede mandar tostar el detector o electrocutar a algún técnico que este instalando piezas en el lugar.

Existen también cámaras en las instalaciones tanto del CR como de los detectores (NDOS, FarDet, NearDet) por lo que se tiene una vista en tiempo real de todos los procesos que involucran instalación y monitoreo. Se puede ver por ejemplo a trabajadores descansando del otro lado de la pantalla y ellos pueden ver a shifters visitando Facebook en lugar de poner atencion a las alarmas. Big Brother version Scientific.

De der. a izq. : Run Control, OnMon, WebCams GUIs.

De izq a der: Run Control, OnMon. Arriba: WebCams GUIs.

DAQ EXPERTS

Las personas que se llevan mi respeto y admiración por la brutal carga de trabajo, responsabilidad y conocimiento en el área que manejan, son los DAQ Experts. No estoy queriendo decir que sean los héroes de la novela, pero en mi experiencia, han sido las personas que más batallas han enfrentado con tal de hacer que este experimento salga adelante. Al menos en esta fase inicial y a nivel computacional.

El Data Acquisition System es el sistema encargado de hablar con la electrónica de los detectores, recolectar los datos y llevarlos a almacenamiento. DAQ experts son la gente que trabaja con ese sistema. Si tuviera que describirlos en un párrafo, sería:

Gurús en computación. Master Chiefs de Redes e Interfaces electrónicas. Hacen que las cosas funcionen desde la Xterm de su Macbook. No molestarlos.

Environmental & Power supply GUIs

Environmental & Power supply GUIs

CONCLUSIONS

A estas alturas del año, la construcción del FarDet esta casi a su fin. El siguiente paso será comenzar a poner en marcha el NearDet y ponerlo a trabajar. Esto requerirá que tanto los shifters del CR como otros grupos sumen esfuerzos y aprendan de errores cometidos.

Así es esto y qué mejor que estar en la fase inicial de este gran proyecto.

Vista desde el CR. Junio 2013.

Vista desde el CR. Junio 2013.

——
The NOvA Series es un intento por difundir a la comunidad de ConCiencia algunas de las experiencias que como grad student he tenido dentro de la colaboración NOvA. En futuras entregas discutiré con más detalle en qué consiste el experimento, qué es lo que busca, cómo funciona, entre otros. Preguntas y comentarios son bienvenidos!

%:cout>> ++ Felices Fiestas!! ++